2023年10月 00023高等数学(工本)真题解析

说明

2023年10月 00023高等数学(工本)真题解析

单选题

  1. 在空间直角坐标系中, 点(1,1,0)在( A )

    A. Oxy平面 B.Oxz平面 C.Oyz平面 D.z轴

  2. 极限\(\lim\limits_{x\rightarrow0\atop y\rightarrow3}xsin\dfrac{1}{xy}=\)( A )
    A.0 B.1 C.3 D.不存在
    解:

    \[x\rightarrow0,y\rightarrow3时x\rightarrow0 \quad sin\dfrac{1}{xy} 是(-1,1)的有界函数, 所以\lim\limits_{x\rightarrow0\atop y\rightarrow3}xsin\dfrac{1}{xy}=0 \]

  3. 微分方程是( B )
    A.可分离变量的微分方程 B. 齐次方程 C.一阶线性齐次方程 D.一阶线性非齐次方程

  4. 下列无穷级数中,收敛的无穷级数是(D)
    A. \(\sum\limits_{n=1}^\infty\dfrac{2n-2}{3n+1}\) B.\(\sum\limits_{n=1}^\infty(-1)^{n-1}\)C.\(\sum\limits_{n=1}^\infty\dfrac{3^{n-1}}{2^{n+1}}\)D.\(\sum\limits_{n=1}^\infty\dfrac{1}{n^2}\)
    解:
    A \(\lim\limits_{n\rightarrow\infty} u_n=\dfrac{2}{3} \neq0\)发散
    B 震荡函数不收敛
    C\(\sum\limits_{n=1}^\infty\dfrac{3^{n-1}}{2^{n+1}} = \sum\limits_{n=1}^\infty\dfrac{3^{n}}{2^{n}\cdot6}= \dfrac{1}{6}\sum\limits_{n=1}^\infty(\dfrac{3}{2})^n\) 发散
    Dp级数且P>1收敛

  5. 设积分区域\(D: x^2+y^2\leq4\),则二重积分\(\iint\limits_D(2-x-y)dxdy=\)
    A. 0 B. $ 4 \pi $ C. $ 8\pi$ D. \(16\pi\)
    解:$ \iint\limits_D(2-x-y)dxdy= \int_0^{2\pi} d\theta\int_0^2(2-sin\theta-cos\theta)rdr = 2\int_0^{2\pi}(2-sin\theta-cos\theta)d\theta=8\pi$

  6. 向量$ \alpha={2,1,-9} \quad \beta={1,0,1}$ 则\(\alpha\cdot\beta=\)
    解:$ \alpha \cdot\beta =(2\times1)+(1\times0)+(-9\times1)=-7 $

  7. 设函数\(f(x,y)=\dfrac{4xy}{x^2-y^2}则f(1,\dfrac{y}{x})=\)
    A. \(\dfrac{4y}{x^2-y^2}\) B. \(\dfrac{4y}{y^2-x^2}\)C. \(\dfrac{4xy}{x^2-y2}\)D. \(\dfrac{4y}{y^2-x^2}\)
    解:\(将(1,\dfrac{y}{x}) 代入f(1,\dfrac{y}{x})= \dfrac{4\dfrac{y}{x}}{1-\dfrac{y^2}{x^2}}= \dfrac{4xy}{x^2-y2}\)

  8. 设积分区域是\(|x|\leq=1,|y|\leq=1,|z|\leq=1,\) 则三重积分\(\iiint\limits_{\Omega} 2dxdydz\) = ( D )
    A.2 B. 4 C. 8 D. 16
    解: \(\iiint\limits_{\Omega} 2dxdydz=2\iiint\limits_{\Omega}dxdydz\) 等于2倍积分区域的体积, 积分区域是变长为2的正方体体积为8

  9. 设函数\(f(x)\)是周期为\(2\pi\)的周期函数,\(f(x)\)的傅里叶函数为\(\dfrac{3}{4}+\sum\limits_1^\infty\dfrac{(-1)^{n-1}\cdot 3}{n^2} cosnx\)则的傅里叶系数为\(b_1=\) ( B )
    A.-3 B. 0 C. 3 D.\(\dfrac{15}{4}\)
    解:

    \[傅里叶函数 f(x) = \dfrac{a_0}{2} + \sum\limits_1^\infty (a_ncosnx+b_nsinnx)\\ 所以\dfrac{a_0}{2}=\dfrac{3}{4} \quad a_n=\dfrac{(-1)^{n-1}\cdot 3}{n^2} \quad b_n = 0 \]

  10. 微分方程\(y^{''}+(x^2+1)y^{'}+y=2\)的一个特解呀\(y^*\)= ( A )
    \(A.2\quad B.2x\quad C.2+x\quad D.x^2\)
    解 : 将选项带入看是否成立

计算题

  1. 求平面\(2x+y-z=3\)与直线\(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-2}{-1}\)的交点坐标
    解:

\[\begin{aligned} &\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-2}{-1}=t\\ &x=2t+1 \quad y=3t-1\quad z=-t+2\\ &2x+y-z=3\Rightarrow 4t+2+3t-1+t-2=3\Rightarrow t=\dfrac{1}{2}\\ &\Rightarrow x= 2, y=\dfrac{1}{2}, z= \dfrac{3}{2}\\ &所以交点坐标为(2,\dfrac{1}{2},\dfrac{3}{2}) \end{aligned} \]

  1. 已知常数\(k>0\),且原点到平面\(x+ky-2z=9\)的距离为3, 求常数k的值
    解:

\[\begin{aligned} &原点到直线的距离d=\dfrac{\lvert -9 \rvert}{\sqrt{1^2+k^2+(-2)^2}}=3\\ &k=\pm2\\ & 已知k>0 \Rightarrow k= 2 \end{aligned} \]

  1. 设函数\(u=ln^{\sqrt{x^2+y2+z^2}}\)求全微分du
    解:

\[\begin{aligned} &\dfrac{\partial u}{\partial x} = \dfrac{x}{x^2+y^2+z^2}\\ &\dfrac{\partial u}{\partial y} = \dfrac{y}{x^2+y^2+z^2}\\ &\dfrac{\partial u}{\partial z} = \dfrac{z}{x^2+y^2+z^2}\\ &du=\dfrac{xdx}{x^2+y^2+z^2}+\dfrac{ydy}{x^2+y^2+z^2}+\dfrac{zdz}{x^2+y^2+z^2}\\ &du=\dfrac{xdx+ydt+zdz}{x^2+y^2+z^2} \end{aligned} \]

  1. 设方程\(e^{-xy}-3z+e^z=0\), 确定函数\(z=z(x,y)\)\(\dfrac{\partial z}{\partial x}\)
    解:

\[\begin{aligned} & f(x)=e^{-xy}-3z+e^z=0\\ & f_z=-3+e^z \quad f_x=-ye^{-xy}\\ &\dfrac{\partial z}{\partial x}=-\dfrac{f_x}{f_z}= \dfrac{ye^{-xy}}{e^z-3} \end{aligned} \]

  1. 设函数\(f(x,y)=e^xcosy\) ,求梯度\(gradf(0,\dfrac{\pi}{4})\)
    解:

\[\begin{aligned} & f_x=cosye^x \quad f_y=-e^xsiny\\ & gradf=cosye^x i-e^xsinyj\\ & gradf(0,\dfrac{\pi}{4})=\dfrac{\sqrt{2}}{2}i-\dfrac{\sqrt{2}}{2}j \end{aligned} \]

  1. 计算二重积分\(\iint\limits_D(2x-y)dxdy\), 其中积分区域\(x+y=2,y=x,x轴\)所围成的区域
    解:

\[\begin{aligned} & \iint\limits_D(2x-y)dxdy\\ & =\int_0^1dx\int_0^x(2x-y)dy+\int_1^2dx\int_0^{2-x}(2x-y)dy\\ & =\dfrac{5}{3} \end{aligned} \]

  1. 计算对弧长的曲线积分\(\oint\limits_L(x^2+y^2)ds\),L是圆周\(x^2+y^2=4\)
    解:

\[\begin{aligned} & x=2sin\theta \quad y=2cos\theta\\ & \oint\limits_L(x^2+y^2)ds\\ & =\int_0^{2\pi}4\sqrt{(2cos\theta)^2+(-2sin\theta)^2}d\theta\\ & =16\pi \end{aligned} \]

  1. 计算对坐标曲线\(\oint\limits_Le^{x+y}dy\)积分L是(0,0)到(1,1)的直线段
    解:

\[\begin{aligned} & y=y \quad x=y\\ & \oint\limits_Le^{x+y}dy\\ & =\int_0^{1}e^{2y}dy\\ & =\dfrac{1}{2}e^{2y} \big|_0^1 \quad(换元积分 元为2y)\\ & =\dfrac{1}{2}(e^2-1) \end{aligned} \]

  1. 将函数\(f(x)=ln(1+x)\)展开为幂级数
    解:

\[\begin{aligned} f^{'}(x)&= \dfrac{1}{1+x}\\ f^{'}(x) &= \sum\limits_0^\infty(-1)^nx^n \quad (-1<x<1)\\ f^{'}(x) &= 0x^0+(-1)x^1+(-1)^2x^2+(-1)^3x^3+...+(-1)^nx^n\\ f(x)&= x+(-1)\dfrac{x^2}{2}+(-1)^2\dfrac{x^3}{3}+(-1)^3\dfrac{x^4}{4}+...+(-1)^{n-1}\dfrac{x^n}{n}\\ &=\sum\limits_1^{\infty}(-1)^{n-1}\dfrac{x^n}{n} \quad(-1<x<1) \end{aligned} \]

  1. 求微分方程\(y{''}+5y+6=0\)的通解
    解:

\[\begin{aligned} &特征方程:x^2+5x+6=0\\ &特征根: x_1=-2, x_2=-3\\ &通解:y=C_1e^{-2x}+C_2e^{-3x} \end{aligned} \]

综合题

  1. 判断无穷级数\(\sum\limits_1^\infty (\dfrac{n}{3n+1})^n\)的敛散性
    解:根值审敛法
    \( \begin{aligned} &\lim\limits_{n\rightarrow\infty} \sqrt[n]{(\dfrac{n}{3n+1})^n}\\ &=\lim\limits_{n\rightarrow\infty} \dfrac{n}{3n+1}\\ &=\dfrac{1}{3} \lt 1\\ &\sum\limits_1^\infty (\dfrac{n}{3n+1})^n 收敛 \end{aligned} \)
  2. 计算曲面积分\(\iint\limits_\Sigma xdxdy\), 其中\(\Sigma\)\(x+y+z=3\) 被坐标面所截部分
    解:根值审敛法
    \( \begin{aligned} & \Sigma 在Oxy 的投影为x+y=3与x轴y轴所谓围成的区域\\ & \Sigma 法向量与z轴夹角小于\dfrac{\pi}{2}\\ & \iint\limits_\Sigma xdxdy=\iint\limits_{D_{xy}} xdxdy\\ &=\int_0^3 dx\int_0^{3-x} xdy\\ &=\int_0^3 3x-x^2 dx\\ &=\dfrac{9}{2}\\ \end{aligned} \)
posted @ 2024-06-18 12:46  半壶清水响叮当  阅读(510)  评论(0编辑  收藏  举报