00023 高等数学(工本)2024 年4月真题解析
说明
00023 高等数学(工本)2024 年4月真题解析
一、单选
- 设向量\(a=\{-1,0,1\}\)且\(b=\{1,-1,1\}\),则\(2a+b=\)( D )
解:
\[2a+b=\{-2,0,2\}+\{1,-1,1\}=\{-1,-1,3\}
\]
- .设函数\(z=x^2+y^2\),则全微分\(dz\big |_{(1,1)}\)= ( C )
解:
\[\begin{aligned}
dz &=\dfrac{\partial z}{\partial x} + \dfrac{\partial z}{\partial x}\\
&=2xdx+2ydy
\end{aligned}\\
dz\big|_{(1,1)} = 2dx+2dy
\]
- 下列微分方程中,可分离变量的微分方程是( A )
\[A. \dfrac{dy}{dx}= -\dfrac{y}{x} \quad B.\dfrac{dy}{dx}= e^{xy} \quad C.\dfrac{dy}{dx}= x^2+y^2\quad \dfrac{dy}{dx}= x^2+y^2
\]
解:A 直接符合可分离变量的微分方程定义常微分方程
4. 设级数\(\sum\limits_{n=0}^{\infty} 2x^n\)收敛, 则x的取值可为下列数值中的( B )
\[A.1\quad B.\dfrac{1}{2}\quad C.\dfrac{3}{2}\quad D.2
\]
- 设积分区域D:\(x^2+y^2=R^2\),则二重积分\(\iint\limits_D(x^2+y^2)dxdy\)=( C )
\[A.\dfrac{1}{2}\pi R^2 \quad B.\dfrac{3}{2}\pi R^3 \quad C.\dfrac{1}{2}\pi R^4 \quad D.\pi R^4
\]
解:
\[\iint\limits_D(x^2+y^2)dxdy=\int_0^{2\pi}\int_0^R R^2Rd_Rd_\theta=\int_0^{2\pi}\dfrac{1}{4}R^4d\theta=\dfrac{1}{2}\pi R^4
\]
- 过点\((1,2,-1)\)与\(\dfrac{x-2}{-1}=\dfrac{y+4}{3}=\dfrac{z+1}{1}\)直线平行的直线是( A )
解:
\[直线的方向向量\{-1,3,1\}, 用点向式得直线方程:\\
\dfrac{x-1}{-1}=\dfrac{y-2}{3}=\dfrac{z+1}{1}
\]
- 极限\(\lim\limits_{x\rightarrow 1\atop y\rightarrow 0} \dfrac{1}{y}sin(xy)\) = ( B )
解:
\[\lim\limits_{x\rightarrow 1\atop y\rightarrow 0} \dfrac{1}{y}sin(xy)=\lim\limits_{x\rightarrow 1\atop y\rightarrow 0} \dfrac{xsin(xy)}{xy}=\lim\limits_{x\rightarrow 1\atop y\rightarrow 0}x = 1
\]
- 设积分区域\(x^2+y^2+z^2\leqslant 10\) 则三重积分\(\iiint (2x-z)dxdydz=\) ( A )
解:根据奇偶性 0TODO
- 级数\(\sum\limits_0^n \dfrac{1}{2^n}=\) ( C )
解:
\[\sum\limits_0^n \dfrac{1}{2^n}= 1+ \dfrac{1}{2}+ \dfrac{1}{4}+ \dfrac{1}{8}...=2
\]
- 设C1,C2是任意常数, 则微分方程\(y^{''}=2x+1\) 的通解y=( D )
解:
\[y^{'} = x^2+x+C1\\
y= \dfrac{1}{3}x^3+\dfrac{1}{2}x^2+C1x+C2
\]
二、计算题
- 求直线\(\dfrac{x-1}{1}=\dfrac{y-5}{-2}=\dfrac{z+8}{1}\)与直线\(\dfrac{x+1}{1}=\dfrac{y-1}{1}=\dfrac{z}{-2}\)的夹角\(\theta\)
解:
\[直线的夹角等于方向向量\{1,-2,1\}\{1,1,-2\}的夹角\\
cos\theta=\dfrac{\lvert a\times b\rvert}{\lvert a\rvert\lvert b\rvert}=\dfrac{\lvert1-2-2\rvert}{\sqrt{6}\sqrt{6}}=\dfrac{1}{2}\\
\theta=\dfrac{\pi}{3}
\]
- 求平面\(x-2y+2z-3=0\)的法向量的方向余弦
解:
\[法向量为\{1,-2,2\}\\
方向余弦: 向量与x,y,z轴的夹角的余弦\\
x=\{1,0,0\} \quad cos\alpha=\dfrac{1}{\sqrt{9}\sqrt{1}} = \dfrac{1}{3} \\
y=\{0,1,0\} \quad cos\beta=\dfrac{-2}{\sqrt{9}\sqrt{1}} = \dfrac{-2}{3} \\
z=\{0,0,1\} \quad cos\gamma=\dfrac{2}{\sqrt{9}\sqrt{1}} = \dfrac{2}{3}
\]
- 求曲面\(z=4-x^2-y^2\)在点\((1,1,2)\)的切平面方程
解:偏导的应用
\[F(x)=4-x^2-y^2-z\\
{-2x,-2y,-1}
法线的方向向量为{-2,-2,-1}\\
点法式:切平面为-2(x-1)-2(y-1)-(z-2)=0 \quad \Rightarrow 2(x-1)+2(y-1)+(z-2)=0
\]
- 求函数\(u=2xy-z^2\)在\((2,-1,1)\)处的梯度
解:偏导的应用
\[\dfrac{\partial u}{\partial x} = 2y\\
\dfrac{\partial u}{\partial y} = 2x\\
\dfrac{\partial u}{\partial z} = -2z\\
gradu(2,-1,1)=\{-2,4,-2\}
\]
- 求\(f(x,y)=4(x-y)-x^2-y^2\) 的极值
解:偏导的应用
\[f_x=4-2x=0 \quad\Rightarrow\quad x=2\\
f_y=-4-2y=0 \quad\Rightarrow\quad y=-2\\
则驻点为(2,-2)\\
A=f_{xx}=-2\quad B=f_{xy}=0 \quad C=f_{yy}=-2\\
\Delta=B^2-AC< 0 且A<0\\
所以在(2,-2)取得极大值8
\]
- 计算二重积分\(\iint \limits_D \dfrac{x}{y^2}dxdy\),其中D是由 \(y=\dfrac{1}{x} ,y=x,x=2\) 所围成的闭区域
解:
\[\begin{aligned}
\iint \limits_D \dfrac{x}{y^2}dxdy &=\int_1^2 dx\int_{\frac{1}{x}}^x\dfrac{x}{y^2}dy\\
&=-\int_1^2 1-x^2dx\dfrac{x}{y}\big|_{\frac{1}{x}}^x\\
&=-\int_1^2 1-x^2dx\\
&=(-x+\dfrac{1}{3}x^3)\big|_1^2\\
&=\dfrac{4}{3}
\end{aligned}
\]
- 计算对弧长\(I=\int_Lyds\)的曲线积分,其中L是点到\((\dfrac{1}{2}, -1)\)沿\(y^2=2x\)到点\((2,2)\)的弧长
解:
\[L参数方程\\
\begin{equation}
\left\{
\begin{aligned}
&x=\dfrac{1}{2}y^2\\
&y=y
\end{aligned}
\right.
\end{equation}\\
\begin{aligned}
I&=\int_Lyds\\
&=\int_{-1}^{2} y\sqrt{((\dfrac{1}{2}y^2)^{'})^{2}+ (y^{'})^{2}} dy\\
&=\int_{-1}^{2} y\sqrt{y^2 + 1}dy \quad 凑微分(元为y^2+1)\\
&=\dfrac{1}{3}(y^2+1)^{\frac{3}{2}}\big|_{-1}^{2}\\
&=\dfrac{1}{3}(\sqrt{125}- \sqrt{8})
\end{aligned}
\]
- 计算坐标曲线积分\(\oint_L (e^ycosx-y+1)dx+(e^ysinx+x^2)dy\),曲中L是由\(y=x,y=1,x=0\)所围成区域取正向的边界曲线
解:
\[根据格林公式:\\
令:P=e^ycosx-y+1 \quad Q=e^ysinx+x^2\\
\dfrac{\partial Q}{\partial x} = e^ycosx + 2x \quad \dfrac{\partial P}{\partial y} = e^ycosx -1\\
\begin{aligned}
\oint_L &= \iint \limits_D e^ycosx + 2x- (e^ycosx -1)dxdy\\
&= \iint \limits_D 2x + 1dxdy\\
&= \int _0^1 dx \int _x^1 2x+1dy\\
&= \int _0^1 -2x^2+x+1 dx\\
&= -\dfrac{2}{3}x^3+\dfrac{1}{2}x^2+x \big|_0^1\\
&=\dfrac{5}{6}
\end{aligned}
\]
- 判断级数\(\sum\limits_0^\infty\dfrac{1+n}{1+n^2}\)的敛散性
解:
当\(n>0\)时\(\dfrac{1+n}{1+n^2} >\dfrac{n}{n^2}= \dfrac{1}{n}\)
已知\(\sum\limits_0^\infty\dfrac{1}{n} 发散(调和级数)\)
所以\(\sum\limits_0^\infty\dfrac{1+n}{1+n^2}\)的发散 - 求微分方程的\(y^{''}-2^{'}y-3y=0\)通解
解: 特征根法
\[特征方程 r^2-2r-3= 0\\
特征根: r_1= 3 \quad r_2=-1\\
通解y= C_1e^{3x}+C_2e^{-1x}
\]
三、综合题
- 求幂级数\(\sum\limits_0^\infty\dfrac{2^n}{2n+1} x^n\)的收敛半径和收敛区间
解:
\[\rho=\lim\limits_{x\rightarrow \infty}\lvert\dfrac{a_{n+1}}{a_n}\rvert=\lim\limits_{x\rightarrow \infty}\dfrac{4n+2}{2n+3} = 2\\
所以收敛半径为R=\dfrac{1}{\rho}=\dfrac{1}{2}\\
x=\dfrac{1}{2} 时\sum\limits_0^\infty\dfrac{2^n}{2n+1} x^n 发散\\
x=-\dfrac{1}{2} 时 \sum\limits_0^\infty\dfrac{2^n}{2n+1} x^n 发散\\
所以收敛区间为(-\dfrac{1}{2},\dfrac{1}{2})
\]
- 计算对坐标曲面积分\(I=\iint \limits_\Sigma(x^2+y^2+z^2-1)dxdy\), 其中\(\Sigma\) 是半球面\(\sqrt{3-x^2-y^2}\)
解:
\[z=\sqrt{3-x^2-y^2}\\
\Sigma在x0y 平面的投影x^2+y^2=3\\
\Sigma法向量与z轴夹角小于\dfrac{\pi}{2}\\
\begin{aligned}
I &=\iint \limits_\Sigma(x^2+y^2+z^2-1)dxdy\\
&=\iint\limits_{D_{xy}} (3-1)dxdy\\
&=2\int_0^{2\pi}d\theta\int_0^{\sqrt{3}}rdr\\
&=6\pi
\end{aligned}
\]