多线程和多进程的区别(小结)

 

分类: linux2009-06-19 09:33 37142人阅读 评论(24) 收藏 举报

很想写点关于多进程和多线程的东西,我确实很爱他们。但是每每想动手写点关于他们的东西,却总是求全心理作祟,始终动不了手。

今天终于下了决心,写点东西,以后可以再修修补补也无妨。

 

一.为何需要多进程(或者多线程),为何需要并发?

这个问题或许本身都不是个问题。但是对于没有接触过多进程编程的朋友来说,他们确实无法感受到并发的魅力以及必要性。

我想,只要你不是整天都写那种int main()到底的代码的人,那么或多或少你会遇到代码响应不够用的情况,也应该有尝过并发编程的甜头。就像一个快餐点的服务员,既要在前台接待客户点餐,又要接电话送外卖,没有分身术肯定会忙得你焦头烂额的。幸运的是确实有这么一种技术,让你可以像孙悟空一样分身,灵魂出窍,乐哉乐哉地轻松应付一切状况,这就是多进程/线程技术。

并发技术,就是可以让你在同一时间同时执行多条任务的技术。你的代码将不仅仅是从上到下,从左到右这样规规矩矩的一条线执行。你可以一条线在main函数里跟你的客户交流,另一条线,你早就把你外卖送到了其他客户的手里。

 

所以,为何需要并发?因为我们需要更强大的功能,提供更多的服务,所以并发,必不可少。

 

二.多进程

什么是进程。最直观的就是一个个pid,官方的说法就:进程是程序在计算机上的一次执行活动。

说得简单点,下面这段代码执行的时候

  1. int main()  
  2.   
  3. {  
  4.   
  5. printf(”pid is %d/n”,getpid() );  
  6.   
  7. return 0;  
  8.   
  9. }  

 

进入main函数,这就是一个进程,进程pid会打印出来,然后运行到return,该函数就退出,然后由于该函数是该进程的唯一的一次执行,所以return后,该进程也会退出。

 

看看多进程。linux下创建子进程的调用是fork();

 

  

  1. #include <unistd.h>  
  2. #include <sys/types.h>   
  3. #include <stdio.h>  
  4.   
  5.    
  6.   
  7. void print_exit()  
  8. {  
  9.        printf("the exit pid:%d/n",getpid() );  
  10. }  
  11.   
  12. main ()   
  13. {   
  14.    pid_t pid;   
  15.    atexit( print_exit );      //注册该进程退出时的回调函数  
  16.       pid=fork();   
  17.         if (pid < 0)   
  18.                 printf("error in fork!");   
  19.         else if (pid == 0)   
  20.                 printf("i am the child process, my process id is %d/n",getpid());   
  21.         else   
  22.         {  
  23.                printf("i am the parent process, my process id is %d/n",getpid());   
  24.               sleep(2);  
  25.               wait();  
  26.        }  
  27.   
  28. }  


 

i am the child process, my process id is 15806
the exit pid:15806
i am the parent process, my process id is 15805
the exit pid:15805

这是gcc测试下的运行结果。

 

关于fork函数,功能就是产生子进程,由于前面说过,进程就是执行的流程活动。

那么fork产生子进程的表现就是它会返回2次,一次返回0,顺序执行下面的代码。这是子进程。

一次返回子进程的pid,也顺序执行下面的代码,这是父进程。

(为何父进程需要获取子进程的pid呢?这个有很多原因,其中一个原因:看最后的wait,就知道父进程等待子进程的终结后,处理其task_struct结构,否则会产生僵尸进程,扯远了,有兴趣可以自己google)。

如果fork失败,会返回-1.

额外说下atexit( print_exit ); 需要的参数肯定是函数的调用地址。

这里的print_exit 是函数名还是函数指针呢?答案是函数指针,函数名永远都只是一串无用的字符串。

某本书上的规则:函数名在用于非函数调用的时候,都等效于函数指针。

 

说到子进程只是一个额外的流程,那他跟父进程的联系和区别是什么呢?

我很想建议你看看linux内核的注解(有兴趣可以看看,那里才有本质上的了解),总之,fork后,子进程会复制父进程的task_struct结构,并为子进程的堆栈分配物理页。理论上来说,子进程应该完整地复制父进程的堆,栈以及数据空间,但是2者共享正文段。

关于写时复制:由于一般 fork后面都接着exec,所以,现在的 fork都在用写时复制的技术,顾名思意,就是,数据段,堆,栈,一开始并不复制,由父,子进程共享,并将这些内存设置为只读。直到父,子进程一方尝试写这些区域,则内核才为需要修改的那片内存拷贝副本。这样做可以提高 fork的效率。

 

三.多线程

线程是可执行代码的可分派单元。这个名称来源于“执行的线索”的概念。在基于线程的多任务的环境中,所有进程有至少一个线程,但是它们可以具有多个任务。这意味着单个程序可以并发执行两个或者多个任务。

 

简而言之,线程就是把一个进程分为很多片,每一片都可以是一个独立的流程。这已经明显不同于多进程了,进程是一个拷贝的流程,而线程只是把一条河流截成很多条小溪。它没有拷贝这些额外的开销,但是仅仅是现存的一条河流,就被多线程技术几乎无开销地转成很多条小流程,它的伟大就在于它少之又少的系统开销。(当然伟大的后面又引发了重入性等种种问题,这个后面慢慢比较)。

还是先看linux提供的多线程的系统调用:

 

int pthread_create(pthread_t *restrict tidp,
                   const pthread_attr_t *restrict attr,
                   void *(*start_rtn)(void), 
                   void *restrict arg);

Returns: 0 if OK, error number on failure

第一个参数为指向线程标识符的指针。
第二个参数用来设置线程属性。
第三个参数是线程运行函数的起始地址。
最后一个参数是运行函数的参数。

   

  1. #include<stdio.h>  
  2. #include<string.h>  
  3. #include<stdlib.h>  
  4. #include<unistd.h>  
  5. #include<pthread.h>  
  6.   
  7.    
  8. void* task1(void*);  
  9. void* task2(void*);  
  10.   
  11.   
  12. void usr();  
  13. int p1,p2;  
  14.   
  15. int main()  
  16. {  
  17.     usr();  
  18.     getchar();  
  19.     return 1;  
  20. }  
  21.   
  22.    
  23.   
  24. void usr()  
  25. {  
  26.        pthread_t pid1, pid2;  
  27.     pthread_attr_t attr;  
  28.        void *p;  
  29.         int ret=0;  
  30.        pthread_attr_init(&attr);         //初始化线程属性结构  
  31.        pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);   //设置attr结构为分离  
  32.        pthread_create(&pid1, &attr, task1, NULL);         //创建线程,返回线程号给pid1,线程属性设置为attr的属性,线程函数入口为task1,参数为NULL  
  33.     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);  
  34. pthread_create(&pid2, &attr, task2, NULL);  
  35. //前台工作  
  36.   
  37. ret=pthread_join(pid2, &p);         //等待pid2返回,返回值赋给p  
  38.        printf("after pthread2:ret=%d,p=%d/n", ret,(int)p);            
  39.   
  40. }  
  41.   
  42. void* task1(void *arg1)  
  43. {  
  44. printf("task1/n");  
  45. //艰苦而无法预料的工作,设置为分离线程,任其自生自灭  
  46.     pthread_exit( (void *)1);  
  47.   
  48. }  
  49.   
  50. void* task2(void *arg2)  
  51. {  
  52.     int i=0;  
  53.     printf("thread2 begin./n");  
  54.     //继续送外卖的工作  
  55.     pthread_exit((void *)2);  
  56. }  


 

这个多线程的例子应该很明了了,主线程做自己的事情,生成2个子线程,task1为分离,任其自生自灭,而task2还是继续送外卖,需要等待返回。(因该还记得前面说过僵尸进程吧,线程也是需要等待的。如果不想等待,就设置线程为分离线程)

 额外的说下,linux下要编译使用线程的代码,一定要记得调用pthread库。如下编译:

 gcc -o pthrea -pthread  pthrea.c

 

四.比较以及注意事项

 

1.看完前面,应该对多进程和多线程有个直观的认识。如果总结多进程和多线程的区别,你肯定能说,前者开销大,后者开销较小。确实,这就是最基本的区别。

2.线程函数的可重入性:

说到函数的可重入,和线程安全,我偷懒了,引用网上的一些总结。

线程安全:概念比较直观。一般说来,一个函数被称为线程安全的,当且仅当被多个并发线程反复调用时,它会一直产生正确的结果。 

可重入:概念基本没有比较正式的完整解释,但是它比线程安全要求更严格。根据经验,所谓“重入”,常见的情况是,程序执行到某个函数foo()时,收到信号,于是暂停目前正在执行的函数,转到信号处理函数,而这个信号处理函数的执行过程中,又恰恰也会进入到刚刚执行的函数foo(),这样便发生了所谓的重入。此时如果foo()能够正确的运行,而且处理完成后,之前暂停的foo()也能够正确运行,则说明它是可重入的。

 

线程安全的条件:

要确保函数线程安全,主要需要考虑的是线程之间的共享变量。属于同一进程的不同线程会共享进程内存空间中的全局区和堆,而私有的线程空间则主要包括栈和寄存器。因此,对于同一进程的不同线程来说,每个线程的局部变量都是私有的,而全局变量、局部静态变量、分配于堆的变量都是共享的。在对这些共享变量进行访问时,如果要保证线程安全,则必须通过加锁的方式。

 

可重入的判断条件:

 

 

要确保函数可重入,需满足一下几个条件:

1、不在函数内部使用静态或全局数据 
2、不返回静态或全局数据,所有数据都由函数的调用者提供。 
3、使用本地数据,或者通过制作全局数据的本地拷贝来保护全局数据。
4、不调用不可重入函数。

 

 

可重入与线程安全并不等同,一般说来,可重入的函数一定是线程安全的,但反过来不一定成立。它们的关系可用下图来表示:

 

 

 

比如:strtok函数是既不可重入的,也不是线程安全的;加锁的strtok不是可重入的,但线程安全;而strtok_r既是可重入的,也是线程安全的。

 

如果我们的线程函数不是线程安全的,那在多线程调用的情况下,可能导致的后果是显而易见的——共享变量的值由于不同线程的访问,可能发生不可预料的变化,进而导致程序的错误,甚至崩溃。

 

3.关于IPC(进程间通信)

由于多进程要并发协调工作,进程间的同步,通信是在所难免的。

稍微列举一下linux常见的IPC.

 

 

linux下进程间通信的几种主要手段简介:

  1. 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
  2. 信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
  3. 报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
  4. 共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
  5. 信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
  6. 套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

或许你会有疑问,那多线程间要通信,应该怎么做?前面已经说了,多数的多线程都是在同一个进程下的,它们共享该进程的全局变量,我们可以通过全局变量来实现线程间通信。如果是不同的进程下的2个线程间通信,直接参考进程间通信。

 

4.关于线程的堆栈

说一下线程自己的堆栈问题。

是的,生成子线程后,它会获取一部分该进程的堆栈空间,作为其名义上的独立的私有空间。(为何是名义上的呢?)由于,这些线程属于同一个进程,其他线程只要获取了你私有堆栈上某些数据的指针,其他线程便可以自由访问你的名义上的私有空间上的数据变量。(注:而多进程是不可以的,因为不同的进程,相同的虚拟地址,基本不可能映射到相同的物理地址)

 

 

5.在子线程里fork

 

看过好几次有人问,在子线程函数里调用system或者 fork为何出错,或者fork产生的子进程是完全复制父进程的吗?

我测试过,只要你的线程函数满足前面的要求,都是正常的。

 

  1. #include<stdio.h>  
  2. #include<string.h>  
  3. #include<stdlib.h>  
  4. #include<unistd.h>  
  5. #include<pthread.h>  
  6.                                                                                                   
  7. void* task1(void *arg1)  
  8. {  
  9.     printf("task1/n");  
  10.     system("ls");  
  11.     pthread_exit( (void *)1);  
  12. }  
  13.                                                                                                   
  14. int main()  
  15. {  
  16.   int ret=0;  
  17.   void *p;  
  18.    int p1=0;  
  19.    pthread_t pid1;  
  20.     pthread_create(&pid1, NULL, task1, NULL);  
  21.     ret=pthread_join(pid1, &p);  
  22.      printf("end main/n");  
  23.     return 1;  
  24. }  


 

 

上面这段代码就可以正常得调用ls指令。

 

不过,在同时调用多进程(子进程里也调用线程函数)和多线程的情况下,函数体内很有可能死锁。

具体的例子可以看看这篇文章。

 

http://www.cppblog.com/lymons/archive/2008/06/01/51836.aspx

 

 

准则3:多线程程序里不准使用fork

Posted on 2008-06-01 20:16 lymons 阅读(5165) 评论(0)  编辑 收藏 引用 所属分类: C++ 、C 、Unix/Linux 、文章翻译 
 
From 2008精选

 

鉄則3: マルチスレッドのプログラムでのforkはやめよう
准则3:多线程程序里不准使用fork

 

マルチスレッドのプログラムで、「自スレッド以外のスレッドが存在している状態」でfork

 

何が起きるか
能引起什么问题呢?

 

実例から見てみましょう。次のコードを実行すると、子プロセスは実行開始直後のdoit() 呼び出し時、高い確率でデッドロックします。
那看看实例吧.一执行下面的代码,在子进程的执行开始处调用doit()时,发生死锁的机率会很高.

 

 1void* doit(void*) {
 2
 3    static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
 4
 5    pthread_mutex_lock(&mutex);
 6
 7    struct timespec ts = {10, 0}; nanosleep(&ts, 0); // 10秒寝る
 8                                                     // 睡10秒
 9
10    pthread_mutex_unlock(&mutex);
11
12    return 0;
13
14}
15
16 
17
18int main(void) {
19
20pthread_t t;  
21
22pthread_create(&t, 0, doit, 0); // サブスレッド作成・起動
23
24                                // 做成并启动子线程
25
26    if (fork() == 0) {
27
28        // 子プロセス。
29
30        // 子プロセスが生成される瞬間、親のサブスレッドはnanosleep中の場合が多い。
31
32        //子进程
33
34        //在子进程被创建的瞬间,父的子进程在执行nanosleep的场合比较多
35
36        doit(0); return 0;
37
38    }
39
40pthread_join(t, 0); // サブスレッド完了待ち
41
42                    // 等待子线程结束
43
44}
45

 

以下にデッドロックの理由を説明いたします。
以下是说明死锁的理由.

 

一般に、forkを行うと
一般的,fork做如下事情

  1. 親プロセスの「データ領域」は子プロセスにそのままコピー
  2. 子プロセスは、シングルスレッド状態で生成
  1. 父进程的内存数据会原封不动的拷贝到子进程中
  2. 子进程在单线程状态下被生成

されます。データ領域には、静的記憶域を持つ変数*2が格納されていますが、それらは子プロセスにコピーされます。また、親プロセスにスレッドが複数存在していても、子プロセスにそれらは継承されません。forkに関する上記2つの特徴がデッドロックの原因となります。
在内存区域里,静态变量*2mutex的内存会被拷贝到子进程里.而且,父进程里即使存在多个线程,但它们也不会被继承到子进程里. fork的这两个特征就是造成死锁的原因.
译者注: 死锁原因的详细解释 --- 
    1. 线程里的doit()先执行.
    2. doit执行的时候会给互斥体变量mutex加锁.
    3. mutex变量的内容会原样拷贝到fork出来的子进程中(在此之前,mutex变量的内容已经被线程改写成锁定状态).
    4. 子进程再次调用doit的时候,在锁定互斥体mutex的时候会发现它已经被加锁,所以就一直等待,直到拥有该互斥体的进程释放它(实际上没有人拥有这个mutex锁).
    5. 线程的doit执行完成之前会把自己的mutex释放,但这是的mutex和子进程里的mutex已经是两份内存.所以即使释放了mutex锁也不会对子进程里的mutex造成什么影响.

 

例えば次のようなシナリオを考えてみてください。上記のマルチスレッドプログラムでの不用意なforkによって子プロセスがデッドロックすることがわかると思います*3
例如,请试着考虑下面那样的执行流程,就明白为什么在上面多线程程序里不经意地使用fork就造成死锁了*3.

1.    fork前の親プロセスでは、スレッド1と2が動いている

2.    スレッド1がdoit関数を呼ぶ

3.    doit関数が自身のmutexをロックする

4.    スレッド1がnanosleepを実行し、寝る

5.    ここで処理がスレッド2に切り替わる

6.    スレッド2がfork関数を呼ぶ

7.    子プロセスが生成される。

8.    この時、子プロセスのdoit関数用mutexは「ロック状態」である。また、ロック状態を解除するスレッドは子プロセス中には存在しない!

9.    子プロセスが処理を開始する。

10.        子プロセスがdoit関数を呼ぶ

11.        子プロセスがロック済みのmutexを再ロックしてしまい、デッドロックする

1.    在fork前的父进程中,启动了线程1和2

2.    线程1调用doit函数

3.    doit函数锁定自己的mutex

4.    线程1执行nanosleep函数睡10秒

5.    在这儿程序处理切换到线程2

6.    线程2调用fork函数

7.    生成子进程

8.    这时,子进程的doit函数用的mutex处于”锁定状态”,而且,解除锁定的线程在子进程里不存在

9.    子进程的处理开始

10.子进程调用doit函数

11.子进程再次锁定已经是被锁定状态的mutex,然后就造成死锁

このdoit関数のように、マルチスレッド下でのforkで問題を引き起こす関数を、「fork-unsafeな関数」と呼ぶことがあります。逆に、問題を起こさない関数を「fork-safeな関数」と呼ぶことがあります。一部の商用UNIX*4では、OSの提供する関数について、ドキュメントにfork-safetyの記載がありますが、Linux(glibc)にはもちろん! 記載がありません。POSIXでも特に規定がありませんので、どの関数がfork-safeであるかは殆ど判別不能です。わからなければunsafeと考えるほうが良いでしょう。 (2004/9/12 追記) Wolfram Glogerさんが非同期シグナルセーフな関数を呼ぶのは規格準拠と言っておられるので調べてみたら、pthread_atforkのところに "In the meantime*5, only a short list of async-signal-safe library routines are promised to be available." とありました。そういうことのようです。 
像这里的doit函数那样的,在多线程里因为fork而引起问题的函数,我们把它叫做”fork-unsafe函数”.反之,不能引起问题的函数叫做”fork-safe函数”.虽然在一些商用的UNIX里,源于OS提供的函数(系统调用),在文档里有fork-safety的记载,但是在Linux(glibc)里当然!不会被记载.即使在POSIX里也没有特别的规定,所以那些函数是fork-safe的,几乎不能判别.不明白的话,作为unsafe考虑的话会比较好一点吧.(2004/9/12追记)Wolfram Gloger说过,调用异步信号安全函数是规格标准,所以试着调查了一下,在pthread_atforkの这个地方里有” In the meantime*5, only a short list of async-signal-safe library routines are promised to be available.”这样的话.好像就是这样.

 

ちなみに、malloc関数は自身に固有のmutexを持っているのが通例ですので、普通はfork-unsafeです。malloc関数に依存する数多くの関数、例えばprintf関数などもfork-unsafeとなります。
随便说一下,malloc函数就是一个维持自身固有mutex的典型例子,通常情况下它是fork-unsafe的.依赖于malloc函数的函数有很多,例如printf函数等,也是变成fork-unsafe的.

いままでthread+forkは危険と書いてきましたが、一つだけ特例があります。「fork直後にすぐexecする場合は、特例として問題がない」のです。何故でしょう..?exec系関数*6が 呼ばれると、プロセスの「データ領域」は一旦綺麗な状態にリセットされます。したがって、マルチスレッド状態のプロセスであっても、fork後にすぐ、危 険な関数を一切呼ばずにexec関数を呼べば、子プロセスが誤動作することはないのです。ただし、「すぐ」と書いてあることに注意してください。exec前に printf(“I’m child process”); を一発呼ぶだけでもデッドロックの危険があります!
直到目前为止,已经写上了thread+fork是危险的,但是有一个特例需要告诉大家.”fork后马上调用exec的场合,是作为一个特列不会产生问题的”. 什么原因呢..? exec函数*6一被调用,进程的”内存数据”就被临时重置成非常漂亮的状态.因此,即使在多线程状态的进程里,fork后不马上调用一切危险的函数,只是调用exec函数的话,子进程将不会产生任何的误动作.但是,请注意这里使用的”马上”这个词.即使exec前仅仅只是调用一回printf(“I’m child process”),也会有死锁的危险.
译者注:exec函数里指明的命令一被执行,改命令的内存映像就会覆盖父进程的内存空间.所以,父进程里的任何数据将不复存在.

 

災いをどう回避するか
如何规避灾难呢?

 

マルチスレッドのプログラムでのforkを安全に行うための、デッドロック問題回避の方法はあるでしょうか?いくつか考えてみます。
为了在多线程的程序中安全的使用fork,而规避死锁问题的方法有吗?试着考虑几个.

 

回避方法1: forkを行う場合は、それに先立って他スレッドを全て終了させる
规避方法1:fork的时候,在它之前让其他的线程完全终止.

 

forkに先立って他スレッドを全て終了させておけば、問題はおきません。ただ、それが可能なケースばかりではないでしょう。また、何らかの要因で他スレッドの終了が行われないままforkしてしまった場合、解析困難な不具合して問題が表面化してしまいます。
在fork之前,让其他的线程完全终止的话,则不会引起问题.但这仅仅是可能的情况.还有,因为一些原因而其他线程不能结束就执行了fork的时候,就会是产生出一些解析困难的不具合的问题.

 

回避方法2: fork直後に子プロセスがexecを呼ぶようにする 
规避方法2:fork后在子进程中马上调用exec函数

(2004/9/11 書き忘れていたので追記)
(2004/9/11 追记一些忘了写的东西)

 

回 避方法1が取れない場合は、子プロセスはfork直後に、どんな関数(printfなどを含む)も呼ばずにすぐにexeclなど、execファミリーの関 数を呼ぶようにします。もし、"execしないfork"を一切使わないプログラムであれば、現実的な回避方法でしょう。
不用使用规避方法1的时候,在fork后不调用任何函数(printf等)就马上调用execl等,exec系列的函数.如果在程序里不使用”没有exec就fork”的话,这应该就是实际的规避方法吧.
译者注:笔者的意思可能是把原本子进程应该做的事情写成一个单独的程序,编译成可执行程序后由exec函数来调用.

 

回避方法3「他スレッド」ではfork-unsafeな処理を一切行わない
规避方法3:”其他线程,不做fork-unsafe的处理

 

forkを呼ぶスレッドを除く全てのスレッドが、fork-unsafeな処理を一切行わない方法です。数値計算の速度向上目的でスレッドを使用している場合*7などは、なんとか可能かもしれませんが、一般のアプリケーションでは現実的ではありません。どの関数がfork-safeなのか把握することだけでも容易ではないからです。fork-safeな関数、要するに非同期シグナルセーフな関数ですが、それは数えるほどしかないからです。この方法では malloc/new, printf すら使えなくなってしまいます。
除了调用fork的线程,其他的所有线程不要做fork-unsafe的处理.为了提高数值计算的速度而使用线程的场合*7,这可能是fork-safe的处理,但是在一般的应用程序里则不是这样的.即使仅仅是把握了那些函数是fork-safe的,做起来还不是很容易的.fork-safe函数,必须是异步信号安全函数,而他们都是能数的过来的.因此,malloc/new,printf这些函数是不能使用的.

 

回避方法4: pthread_atfork関数を用いて、fork前後に自分で用意したコールバック関数を呼んでもらう
规避方法4:使用pthread_atfork函数,即将fork之前调用事先准备的回调函数.

 

pthread_atfork 関数を用いて、fork前後に自分で用意したコールバック関数を呼んでもらい、コールバック内で、プロセスのデータ領域を掃除する方法です。しかし、OS 提供の関数(例: malloc)については、コールバック関数から掃除する方法がありません。mallocの使用するデータ構造は外部からは見えないからです。よって、 pthread_atfork関数はあまり実用的ではありません。
使用pthread_atfork函数,在即将fork之前调用事先准备的回调函数,在这个回调函数内,协商清除进程的内存数据.但是关于OS提供的函数(例:malloc),在回调函数里没有清除它的方法.因为malloc里使用的数据结构在外部是看不见的.因此,pthread_atfork函数几乎是没有什么实用价值的.

 

回避方法5マルチスレッドのプログラムでは、forkを一切使用しない
规避方法5:在多线程程序里,不使用fork

 

forkを一切使用しない方法です。forkするのではなく、素直にpthread_createするようにします。これも、回避策2と同様に現実的な方法であり、推奨できます。
就是不使用fork的方法.即用pthread_create来代替fork.这跟规避策2一样都是比较实际的方法,值得推荐.

 

*1:子プロセスを生成するシステムコール
*1:生成子进程的系统调用

*2:グローバル変数や関数内のstatic変数
*2:全局变量和函数内的静态变量

*3:Linuxを使用するのであれば、pthread_atfork関数のman pageを見るとよいです。この種のシナリオについて若干の解説があります
*3:如果使用Linux的话,查看pthread_atfork函数的man手册比较好.关于这些流程都有一些解释.

*4:SolarisやHP-UXなど
*4:Solaris和HP-UX等

*5:fork後execするまでの間
*5:从fork后到exec执行的这段时间

*6:≒execveシステムコール
*6:≒execve系统调用

*7:四則演算しか行わないならfork-safe
*7:仅仅做四则演算的话就是fork-safe的

posted @ 2013-05-23 11:02  tangr206  阅读(785)  评论(0编辑  收藏  举报