.Tang

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

.a

在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间。如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程

,十几个还好,但是如果上百个甚至更多,那手动去限制进程数量就显得特别的繁琐,此时进程池就派上用场了。 


Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。

 

import os
import face_recognition
from multiprocessing.dummy import Pool

pool = Pool(8)  # 启动进程池


def helloface(known_face_encodings, known_face_names, unknown_pic):
    """
    单个图片识别
    :param known_face_encodings: single known img's encodings
    :param known_face_names: all names, >> list
    :param unknown_pic:  single unknown img's path
    :return: face result >>name
    """
    name = "Unknown"
    unknown_image = face_recognition.load_image_file(unknown_pic)
    face_locations = face_recognition.face_locations(unknown_image)  # box size?
    face_encodings = face_recognition.face_encodings(unknown_image, face_locations)
    for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
        matches = face_recognition.compare_faces(known_face_encodings, face_encoding, tolerance=0.39)
        if True in matches:
            first_match_index = matches.index(True)
            name = known_face_names[first_match_index]
        else:
            name = "Unknown"
        return name


def faceRecog(imglist, known_face_names, unknownpath):
    """
    :param imglist: [list known img address]
    :param known_face_names: all known names
    :param unknownpath: single unknownpath
    :return:  The name of the identification And index in names
    """
   ## pool.map(func, iter) known_face_encodings = pool.map(mutl_reg, imglist) # 返回已知图片encodings, list name = "Unknown" first_match_index = "notMatch" unknown_image = face_recognition.load_image_file(unknownpath) face_locations = face_recognition.face_locations(unknown_image) face_encodings = face_recognition.face_encodings(unknown_image, face_locations) for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): matches = face_recognition.compare_faces(known_face_encodings, face_encoding, tolerance=0.39) # print(matches, "--------------------------") if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] return name, first_match_index else: return name, first_match_index def mutl_reg(imglist): """ :param imglist: known img paths, >> list :return: known img's encodings, >> list """ obama_image = face_recognition.load_image_file(imglist) known_face_encodings = face_recognition.face_encodings(obama_image)[0] return known_face_encodings def get_all_path(path='./known/'): """ 获取指定路径下的文件的url, note: path下最好没有其他的目录 :param path: 指定路径 :return: 改路径下的地址 """ all_files = os.walk(path) files_dir = [] for i, v, files in all_files: for file in files: files_dir.append(os.path.join(path, file)) return files_dir def faceRecogUnknownList(known_img_list, names, unknownpaths): """ """ result = [] for unknownpath in unknownpaths: name, index = faceRecog(known_img_list, names, unknownpath) # if index != 'notMatch': result.append({name: unknownpath, 'index': index}) result.append(name) print('It is [%s] to identify the [%s] through a face' % (name, unknownpath)) return result if __name__ == '__main__': # known_face_pic = face_recognition.load_image_file('./known/Comi.jpg') # known_face_encodings = face_recognition.face_encodings(known_face_pic) # name = 'Comi' # unknown_pic_path = './unknown/unknown1.jpg' # name = helloface(known_face_encodings, [name,], unknown_pic_path) # print(name) known_img_list = get_all_path('./known/') names = ['Obama', 'Comi', 'Bidden'] unknownpaths = get_all_path('./unknown/') result = faceRecogUnknownList(known_img_list, names, unknownpaths) print(result)

 

posted on 2018-07-03 17:53  .Tang  阅读(285)  评论(1编辑  收藏  举报