scrapy-redis 分布式爬虫
为什么要学?
Scrapy_redis在scrapy的基础上实现了更多,更强大的功能。
有哪些功能体现?
request去重、爬虫持久化、实现分布式爬虫、断点续爬(带爬取的request存在redis中)、增量式爬虫(爬取过的生成指纹)
工作流程
先来看看之前的爬虫流程
再来看看scrapy_redis的爬虫流程
安装:
pip install scrapy-redis
源码包安装:
git clone git://github.com/rolando/scrapy-redis
官方文档在:https://scrapy-redis.readthedocs.io/en/stable/index.html#running-the-example-project
scrapy_redis 的源码在github:https://github.com/rmax/scrapy-redis
它提供了三个demo在example-projec/example中
三个案例有
先来看第一个案例:
dmoz.py
from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class DmozSpider(CrawlSpider): """Follow categories and extract links.""" name = 'dmoz' allowed_domains = ['dmoz.org'] start_urls = ['http://www.dmoz.org/'] rules = [ Rule(LinkExtractor( restrict_css=('.top-cat', '.sub-cat', '.cat-item') ), callback='parse_directory', follow=True), ] def parse_directory(self, response): for div in response.css('.title-and-desc'): yield { 'name': div.css('.site-title::text').extract_first(), 'description': div.css('.site-descr::text').extract_first().strip(), 'link': div.css('a::attr(href)').extract_first(), }
这个案例很像我们自己写的crawlspider什么区别,所以接下来就要进行配置操作
先来看看官方的 Use the following settings in your project:
1 # 指定schedule队列 2 # Enables scheduling storing requests queue in redis. 3 SCHEDULER = "scrapy_redis.scheduler.Scheduler" 4 5 6 # 指定哪个去重方法给request对象去重 7 # Ensure all spiders share same duplicates filter through redis. 8 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" 9 10 # Default requests serializer is pickle, but it can be changed to any module 11 # with loads and dumps functions. Note that pickle is not compatible between 12 # python versions. 13 # Caveat: In python 3.x, the serializer must return strings keys and support 14 # bytes as values. Because of this reason the json or msgpack module will not 15 # work by default. In python 2.x there is no such issue and you can use 16 # 'json' or 'msgpack' as serializers. 17 #SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" 18 19 # 队列中的内容是否持久保存,False:在关闭redis的时候清空redis 20 # Don't cleanup redis queues, allows to pause/resume crawls. 21 #SCHEDULER_PERSIST = True 22 23 # Schedule requests using a priority queue. (default) 24 #SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' 25 26 # Alternative queues. 27 #SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue' 28 #SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' 29 30 # Max idle time to prevent the spider from being closed when distributed crawling. 31 # This only works if queue class is SpiderQueue or SpiderStack, 32 # and may also block the same time when your spider start at the first time (because the queue is empty). 33 #SCHEDULER_IDLE_BEFORE_CLOSE = 10 34 35 # scrapy_redis实现的items保存到redis的pipeline 36 # Store scraped item in redis for post-processing. 37 ITEM_PIPELINES = { 38 'scrapy_redis.pipelines.RedisPipeline': 300 39 } 40 41 # The item pipeline serializes and stores the items in this redis key. 42 #REDIS_ITEMS_KEY = '%(spider)s:items' 43 44 # The items serializer is by default ScrapyJSONEncoder. You can use any 45 # importable path to a callable object. 46 #REDIS_ITEMS_SERIALIZER = 'json.dumps' 47 48 # 指定redis的地址 49 # Specify the host and port to use when connecting to Redis (optional). 50 #REDIS_HOST = 'localhost' 51 #REDIS_PORT = 6379 52 53 54 # 指定redis的地址 55 # Specify the full Redis URL for connecting (optional). 56 # If set, this takes precedence over the REDIS_HOST and REDIS_PORT settings. 57 #REDIS_URL = 'redis://user:pass@hostname:9001' 58 59 # Custom redis client parameters (i.e.: socket timeout, etc.) 60 #REDIS_PARAMS = {} 61 # Use custom redis client class. 62 #REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' 63 64 # If True, it uses redis' ``spop`` operation. This could be useful if you 65 # want to avoid duplicates in your start urls list. In this cases, urls must 66 # be added via ``sadd`` command or you will get a type error from redis. 67 #REDIS_START_URLS_AS_SET = False 68 69 # Default start urls key for RedisSpider and RedisCrawlSpider. 70 #REDIS_START_URLS_KEY = '%(name)s:start_urls' 71 72 # Use other encoding than utf-8 for redis. 73 #REDIS_ENCODING = 'latin1'
所以我们需要做的就是在配置文件中添加这几行
# 去重 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # 调度器 SCHEDULER = "scrapy_redis.scheduler.Scheduler" # 调度器持久化 SCHEDULER_PERSIST = True # 指定redis地址 REDIS_URL = "redis://192.168.226.150:6379" ITEM_PIPELINES = { 'example.pipelines.ExamplePipeline': 300, 'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis }
在这里也贴上github上的settings:
# Scrapy settings for example project # # For simplicity, this file contains only the most important settings by # default. All the other settings are documented here: # # http://doc.scrapy.org/topics/settings.html # SPIDER_MODULES = ['example.spiders'] NEWSPIDER_MODULE = 'example.spiders' USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)' DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" SCHEDULER = "scrapy_redis.scheduler.Scheduler" SCHEDULER_PERSIST = True #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue" #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue" #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack" ITEM_PIPELINES = { 'example.pipelines.ExamplePipeline': 300, 'scrapy_redis.pipelines.RedisPipeline': 400, } LOG_LEVEL = 'DEBUG' # Introduce an artifical delay to make use of parallelism. to speed up the # crawl. DOWNLOAD_DELAY = 1
接下来我们就运行,跟往常的运行命令一样,切换到example 下,执行命令
\example>scrapy crawl dmoz
然后就去redis中查看
可以看到多了三个键
dmoz:items :存放获取到的item信息,在pipeline中开启RedisPipeline才会存入
dmoz:dupefilter :指纹集合,存放的是已经进入 scheduler 队列的 request 对象的指纹,指纹默认由请求方法,url和请求体组成
dmoz:requests :Scheduler队列,存放着待请求的 request 对象,获取的过程是pop操作,即获取一个会去除一个
三个键的类型:
以及数据
items
dupefilter
requests
如果我们不想把数据存放到redis,而是放到其他的地方,应该怎么做?
先来测试一下redispiipeline 关闭的情况
#ITEM_PIPELINES = { # 'example.pipelines.ExamplePipeline': 300, #'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis #}
再看看redis数据库中这三个键如何变化,变化结果:
dmoz:requests 有变化(变多或者变少或者不变)
dmoz:dupefilter 变多
dmoz:items 不变
所以 redispipeline中仅仅实现了item数据存储到redis的过程,我们可以新建一个pipeline(或者修改默认的ExamplePipeline),让数据存储到其他地方。
接下来看一下 RedisPipeline 的源码段
from scrapy_redis.pipelines import RedisPipeline # 调用这个方法,实现数据的保存 def process_item(self, item, spider): # 调用一个异步线程去处理这个item return deferToThread(self._process_item, item, spider) def _process_item(self, item, spider): key = self.item_key(item, spider) data = self.serialize(item) # 向dmoz:items中添加item self.server.rpush(key, data) return item
去重的方法,通过生成指纹识别:指纹默认由请求方法,url和请求体组成
- 使用sha1加密request得到指纹 - 把指纹存在redis的集合中 - 下一次新来一个request,同样的方式生成指纹,判断指纹是否存在reids的集合中
- fp = hashlib.sha1()
- fp.update(request.method)
- fp.update(request.body or b"")
- fp.update(url)
- fp.hexdigest()
判断数据是否存在redis的集合中,不存在插入
added = self.server.sadd(self.key, fp) return added != 0
去重的的类 RFPDupeFilter :
主要是这三个方法:
request_seen:判断requests对象是否已经存在,如果没有就添加到“dmoz:dupefilter”
request_fingerprint:调用函数request_fingerprint
request_fingerprint:主要是对请求进行加密生成指纹
下面来看看调度器:
总结:
domz案例相当于之前的spider多了两个内容:
1、持久化
2、request去重的功能
通过源码以及setting中的配置来看,我们可以重写 去重 和 调度器的方法 ,还有存储数据的 pipeline 。在配置中改成我们重写的类就行。
Scrapy_redis 之 RedisSpider
这是scrapy_redis 的第二个案例
先来看试一下初始源码
from scrapy_redis.spiders import RedisSpider class MySpider(RedisSpider): """Spider that reads urls from redis queue (myspider:start_urls).""" name = 'myspider_redis' redis_key = 'myspider:start_urls' def __init__(self, *args, **kwargs): # Dynamically define the allowed domains list. domain = kwargs.pop('domain', '') self.allowed_domains = filter(None, domain.split(',')) super(MySpider, self).__init__(*args, **kwargs) def parse(self, response): return { 'name': response.css('title::text').extract_first(), 'url': response.url, }
解析源码
配置文件设置:
# 去重 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # 调度器 SCHEDULER = "scrapy_redis.scheduler.Scheduler" # 调度器持久化 SCHEDULER_PERSIST = True # 指定redis地址 REDIS_URL = "redis://192.168.226.150:6379" ITEM_PIPELINES = { 'example.pipelines.ExamplePipeline': 300, 'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis }
start_url 只能由一台机器爬取,其他机器刚开始处于等待状态,这是随机的
但是这里的start_url 改为redis_key='自定义键名' 例如('dangdang')
那么执行的启动命令就是在redis中执行这条语句:lpush 健名 起始url
lpush dangdang http://www.dangdang.com
Scrapy_redis 之 RedisCrawlSpider
这是scrapy_redis 的第三个案例
先来看初始源码
from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor from scrapy_redis.spiders import RedisCrawlSpider class MyCrawler(RedisCrawlSpider): """Spider that reads urls from redis queue (myspider:start_urls).""" name = 'mycrawler_redis' redis_key = 'mycrawler:start_urls' rules = ( # follow all links Rule(LinkExtractor(), callback='parse_page', follow=True), ) def __init__(self, *args, **kwargs): # Dynamically define the allowed domains list. domain = kwargs.pop('domain', '') self.allowed_domains = filter(None, domain.split(',')) super(MyCrawler, self).__init__(*args, **kwargs) def parse_page(self, response): return { 'name': response.css('title::text').extract_first(), 'url': response.url, }
解析源码
配置文件
# 去重 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # 调度器 SCHEDULER = "scrapy_redis.scheduler.Scheduler" # 调度器持久化 SCHEDULER_PERSIST = True # 指定redis地址 REDIS_URL = "redis://192.168.226.150:6379" ITEM_PIPELINES = { 'example.pipelines.ExamplePipeline': 300, 'scrapy_redis.pipelines.RedisPipeline': 400, # 保存数据到redis }
这个案例跟crawlspider的使用差不多,也是没有start_url 改为了 redis_key
启动方式跟案例二一样。爬虫准备就绪,redis数据库中
lpush 健名 起始url