Swin Transformer结构详解与代码运行

 

 

 

 

 最近一直再看感知相关算法,如LSS、pointnet、pointpillar等相关论文与代码,而当看到多相机检测方法bevfomer论文时候,发现其结构使用了self.attention与cross-attention的transformer方法。

介于此,我将原来沉浸几月的swin-tranformer结构回忆一遍,也想通过这次会议记录个人总结,希望对读者有所帮助。

transformer来源NLP结构,可参考我的另一篇博客,了解transformer结构,链接:https://www.cnblogs.com/tangjunjun/p/15617342.html

查看NLP链接博客,肯定对self-attention及cross-attention有所了解,下文将继续介绍相关swin-transformer的内容:

一.动机

与NLP相比,Transformer应用在视觉领域有两个难点:

  • 物体尺度变化大。比如在目标检测和语义分割中,物体大小可能在5%-95%甚至更大的范围内,这时候多尺度分层特征图是至关重要的,检测中的FPN、分割中unet的skip connection都是用分层特征图来处理多尺度问题的。
  • 图像像素点多,尤其是密集预测的任务。如果把像素点作为token,序列长度会非常大,计算量与图片尺寸的平方成正比。之前的方法要么把特征图作为输入,要么像ViT用patch作为输入,但ViT的特征比较粗糙且没有考虑视觉信号的特点,无法做精细的任务。

Swin Transformer的主要思想是把建模能力很强的transformer和视觉信号的先验联系起来,这些先验具有层次性、局部性和平移不变性,具体做法是用shifted window来建立分层特征图,有了分层特征图就可以用FPN/Unet等结构去做密集预测的任务,而且计算量与图片尺寸成正比。

作为Swin Transformer的重要设计,shifted window有两个含义,一是不重叠的窗口中进行self attention,可以减少计算量,并且引入了局部性先验。此外,不同于传统的滑动窗口,不重叠窗口的设计对硬件实现更加友好,从而具有更快的实际运行速度。Swin Transformer 使用的不重叠窗口中,统一窗口内的点将采用相同的邻域来进行计算,对速度更友好。实际测试表明,非重叠窗口方法的速度比滑动窗口方法快了2倍左右。另一个含义是在两个连续的层中做了移位的操作,在 L 层中,窗口分区从图像的左上角开始,在 L+1 层中,窗口划分则往右下移动了半个窗口,这样的设计保证了不重叠的窗口间可以有信息的交换。

引用:https://zhuanlan.zhihu.com/p/495246390

而本文仅介绍下图红框部分的结构:

 

 

二.红框结构介绍

我将根据数据流走向介绍红框的各个模块,现假设输入为[batch,channel,height,width]=[2,3,800,800]

1.Pathch Partition结构:

Each patch is treated as a “token” and its feature is set as a concatenation of the raw pixel RGB values. In our implementation, we use a patch size of 4 × 4 and thus the feature dimension of each patch is 4 × 4 × 3 = 48. A linear embedding layer is applied on this raw-valued feature to project it to an arbitrary dimension (denoted as C). Several Transformer blocks with modified self-attention computation (Swin Transformer blocks) are applied on these patch tokens. The Transformer blocks maintain the number of tokens (H/4 × W/4 ), and together with the linear embedding are referred to as “Stage 1”.
 

patch embedding模块实现的是patch partition和linear embedding功能,用来切patch并将patch特征嵌入到指定维度。直接用一个kernel_size=4和stride等于patch_size的卷积来实现。模型默认patch_size=4.

x = self.patch_embed(x)

 代码如下:

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    Args:
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, H, W = x.size()
        if W % self.patch_size[1] != 0:
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
        if H % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))

        x = self.proj(x)  # B C Wh Ww
        if self.norm is not None:
            Wh, Ww = x.size(2), x.size(3)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)

        return x
PatchEmbed

输出为:[2,96,200,200]

之后将其展平,通过

x = x.flatten(2).transpose(1, 2)

输出为:[2,40000,96]

 接下来将介绍如下结构:

BasicLayer(
  (blocks): ModuleList(
    (0): SwinTransformerBlock(
      (norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
      (attn): WindowAttention(
        (qkv): Linear(in_features=96, out_features=288, bias=True)
        (attn_drop): Dropout(p=0.0, inplace=False)
        (proj): Linear(in_features=96, out_features=96, bias=True)
        (proj_drop): Dropout(p=0.0, inplace=False)
        (softmax): Softmax(dim=-1)
      )
      (drop_path): Identity()
      (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
      (mlp): Mlp(
        (fc1): Linear(in_features=96, out_features=384, bias=True)
        (act): GELU()
        (fc2): Linear(in_features=384, out_features=96, bias=True)
        (drop): Dropout(p=0.0, inplace=False)
      )
    )
    (1): SwinTransformerBlock(
      (norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
      (attn): WindowAttention(
        (qkv): Linear(in_features=96, out_features=288, bias=True)
        (attn_drop): Dropout(p=0.0, inplace=False)
        (proj): Linear(in_features=96, out_features=96, bias=True)
        (proj_drop): Dropout(p=0.0, inplace=False)
        (softmax): Softmax(dim=-1)
      )
      (drop_path): DropPath(drop_prob=0.018)
      (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
      (mlp): Mlp(
        (fc1): Linear(in_features=96, out_features=384, bias=True)
        (act): GELU()
        (fc2): Linear(in_features=384, out_features=96, bias=True)
        (drop): Dropout(p=0.0, inplace=False)
      )
    )
  )
  (downsample): PatchMerging(
    (reduction): Linear(in_features=384, out_features=192, bias=False)
    (norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
  )
)

2.SwinTransformerBlock结构

(1).img_mask将生成方法

每一个block模块均会生成img_mask方法,如下:

 

 

 随后会对生成的img_mask做如下变化:

mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

有关img_mask与attn_mask的方法,参考:https://blog.csdn.net/weixin_52185313/article/details/125127850

 

顺道说一个如下结构,后面也会用到,该结构实际是划分窗口。

def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size
    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows

 

 

 

 

 输出:attn_mask=[841,49,49] 来源img_mask=[1,203,203,1]==>[1,29,7,29,7]==>[1,29,29,7,7]==>[841,49]

输出:x=[2,40000,96]还未发生改变

2.SwinTransformerBlock,包含MSASW-MSA模块(非常重要)

将以上输出x与attn_mask输入以下结构中:

class SwinTransformerBlock(nn.Module):
    """ Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.H = None
        self.W = None

    def forward(self, x, mask_matrix):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
            mask_matrix: Attention mask for cyclic shift.
        """
        B, L, C = x.shape
        H, W = self.H, self.W
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            attn_mask = mask_matrix
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x
SwinTransformerBlock

以下,我将介绍SwinTransformerBlock结构中的分支结构:

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            attn_mask = mask_matrix
        else:
            shifted_x = x
            attn_mask = None

以上通过self.shift_size控制是否将输入x执行shift操作,若执行shift操作,后面注意力机制将满足论文所说的shift-windows-transformer。

输出:shifted_x=x=[2,40000,96]

以下将通过window_partition将其分成self.window_size的结构,

 # partition windows
x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C =[1682,49,96]
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C =[]

输出:x_windows=[1682,49,96]

核心重点内容:

将x_windows与attn_mask输入以下代码,而我将不在解释此内容,因为看了我attention的博客将会明白

# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

self.attn代码结构:

class WindowAttention(nn.Module):
    """ Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """ Forward function.
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
WindowAttention

 输出:attn_windows=[1682,49,96]

将attn_windows输入到以下代码,进行reverse:

3.patch_merging结构

# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  #[1682,7,7,96]
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C

window_reverse恢复代码:

def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image
    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x

输出:shifted_x=[2,203,203,96]

将shifted_x输入以下代码,进行恢复

# reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

输出:x=[2,40000,96]

4.FFN操作

# FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

输出:x=[2,40000,96]

 

 

 

 

 

 拷贝可执行结构代码:

# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu, Yutong Lin, Yixuan Wei
# modified by tangjunjun
# --------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from timm.models.layers import DropPath, to_2tuple, trunc_normal_





# swin_transformer分类模块
class swin_res(nn.Module):
    def __init__(self, inplanes, planes, stride=2):
        super(swin_res, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.conv3 = nn.Conv2d(planes, planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = nn.Sequential(
            nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(planes),
        )
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Mlp(nn.Module):
    """ Multilayer perceptron."""

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size
    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows

def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image
    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x

class WindowAttention(nn.Module):
    """ Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """ Forward function.
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class SwinTransformerBlock(nn.Module):
    """ Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.H = None
        self.W = None

    def forward(self, x, mask_matrix):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
            mask_matrix: Attention mask for cyclic shift.
        """
        B, L, C = x.shape
        H, W = self.H, self.W
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            attn_mask = mask_matrix
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

class PatchMerging(nn.Module):
    """ Patch Merging Layer
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """
    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.
    Args:
        dim (int): Number of feature channels
        depth (int): Depths of this stage.
        num_heads (int): Number of attention head.
        window_size (int): Local window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 dim,
                 depth,
                 num_heads,
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False):
        super().__init__()
        self.window_size = window_size
        self.shift_size = window_size // 2
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, H, W):
        """ Forward function.
        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """

        # calculate attention mask for SW-MSA
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # 1 Hp Wp 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        for blk in self.blocks:
            blk.H, blk.W = H, W
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x_down = self.downsample(x, H, W)
            Wh, Ww = (H + 1) // 2, (W + 1) // 2
            return x, H, W, x_down, Wh, Ww
        else:
            return x, H, W, x, H, W

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    Args:
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, H, W = x.size()
        if W % self.patch_size[1] != 0:
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
        if H % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))

        x = self.proj(x)  # B C Wh Ww
        if self.norm is not None:
            Wh, Ww = x.size(2), x.size(3)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)

        return x

class SwinTransformer(nn.Module):
    """ Swin Transformer backbone.
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030
    Args:
        pretrain_img_size (int): Input image size for training the pretrained model,
            used in absolute postion embedding. Default 224.
        patch_size (int | tuple(int)): Patch size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        depths (tuple[int]): Depths of each Swin Transformer stage.
        num_heads (tuple[int]): Number of attention head of each stage.
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
        drop_rate (float): Dropout rate.
        attn_drop_rate (float): Attention dropout rate. Default: 0.
        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True.
        out_indices (Sequence[int]): Output from which stages.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters.
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 pretrain_img_size=224,
                 patch_size=4,
                 in_chans=3,
                 embed_dim=96,
                 depths=[2, 2, 6, 2],
                 num_heads=[3, 6, 12, 24],
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.2,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 out_indices=(0, 1, 2, 3),
                 frozen_stages=-1,
                 use_checkpoint=False):
        super().__init__()

        self.pretrain_img_size = pretrain_img_size
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            pretrain_img_size = to_2tuple(pretrain_img_size)
            patch_size = to_2tuple(patch_size)
            patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]

            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2 ** i_layer),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
        self.num_features = num_features
        self.out_shape = {'C3_size': num_features[-3],
                          'C4_size': num_features[-2],
                          'C5_size': num_features[-1]}
        # add a norm layer for each output
        for i_layer in out_indices:
            layer = norm_layer(num_features[i_layer])
            layer_name = f'norm{i_layer}'
            self.add_module(layer_name, layer)

        self._freeze_stages()

        self.upsample = nn.Upsample(scale_factor=2,mode='nearest')
        self.new_block = swin_res(inplanes=384,planes=1024,stride=1)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        if self.frozen_stages >= 1 and self.ape:
            self.absolute_pos_embed.requires_grad = False

        if self.frozen_stages >= 2:
            self.pos_drop.eval()
            for i in range(0, self.frozen_stages - 1):
                m = self.layers[i]
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.
        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        if isinstance(pretrained, str):
            self.apply(_init_weights)
        elif pretrained is None:
            self.apply(_init_weights)
        else:
            raise TypeError('pretrained must be a str or None')


    def forward(self, x):
        """Forward function."""
        x = self.patch_embed(x)

        Wh, Ww = x.size(2), x.size(3)
        if self.ape:
            # interpolate the position embedding to the corresponding size
            absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
            x = (x + absolute_pos_embed).flatten(2).transpose(1, 2)  # B Wh*Ww C
        else:
            x = x.flatten(2).transpose(1, 2)
        x = self.pos_drop(x)

        outs = []
        for i in range(self.num_layers-1):
            layer = self.layers[i]
            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
            norm_layer = getattr(self, f'norm{i}')
            x_out = norm_layer(x_out)
            out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
            outs.append(out)

        out = self.new_block(out)

        return out

            # if i in self.out_indices:
            #     norm_layer = getattr(self, f'norm{i}')
            #     x_out = norm_layer(x_out)
            #     out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
            #     outs.append(out)


        # return outs[1:]

    def train(self, mode=True):
        """Convert the model into training mode while keep layers freezed."""
        super(SwinTransformer, self).train(mode)
        self._freeze_stages()



# def Swin_T():
#     model = SwinTransformer()
#
#     classifier = list([model.layer4, model.avgpool])
#
#     features = nn.Sequential(*features)
#     classifier = nn.Sequential(*classifier)
#     return features, classifier


if __name__ == '__main__':

    input = torch.randn(2, 3, 800, 800)
    M = SwinTransformer()
    output=M(input)
    print(output)
    
swin-transformer code

 

posted @ 2022-11-11 22:19  tangjunjun  阅读(2336)  评论(0编辑  收藏  举报
https://rpc.cnblogs.com/metaweblog/tangjunjun