思路: 这道题比较难,有一个解释很好:

Brute force solution, O(N3):
The obvious brute force solution is to pick all possible starting and ending positions for a substring, and verify if it is a palindrome. There are a total of C(N, 2) such substrings (excluding the trivial solution where a character itself is a palindrome).

Since verifying each substring takes O(N) time, the run time complexity is O(N3).

Dynamic programming solution, O(N2) time and O(N2) space:
To improve over the brute force solution from a DP approach, first think how we can avoid unnecessary re-computation in validating palindromes. Consider the case “ababa”. If we already knew that “bab” is a palindrome, it is obvious that “ababa” must be a palindrome since the two left and right end letters are the same.

Stated more formally below:

Define P[ i, j ] ← true iff the substring Si … Sj is a palindrome, otherwise false.

Therefore,

P[ i, j ] ← ( P[ i+1, j-1 ] and Si = Sj )

The base cases are:

P[ i, i ] ← true
P[ i, i+1 ] ← ( Si = Si+1 )
 
 
 
代码:
 1 class Solution {
 2 public:
 3     string longestPalindrome(string s) {
 4         // Start typing your C/C++ solution below
 5         // DO NOT write int main() function
 6         string result;
 7         
 8         int n = s.length();
 9         int longestBegin = 0;
10         int maxLen = 1;
11         vector<vector<bool> > table(1000, vector<bool>(1000, false));
12         
13         for (int i = 0; i < n; i++) 
14             table[i][i] = true;
15         
16         for (int i = 0; i < n-1; i++){
17             
18             if (s[i] == s[i+1]) {
19                 
20                 table[i][i+1] = true;
21                 longestBegin = i;
22                 maxLen = 2;
23             }
24         }
25         
26         for (int len = 3; len <= n; len++)
27             for (int i = 0; i < n-len+1; i++) {
28                 
29                 int j = i+len-1;
30                 if (s[i] == s[j] && table[i+1][j-1]) {
31                     table[i][j] = true;
32                     longestBegin = i;
33                     maxLen = len;
34                 }
35             }
36         return s.substr(longestBegin, maxLen);
37     }
38 };

 

A simpler approach, O(N2) time and O(1) space:
In fact, we could solve it in O(N2) time without any extra space.

We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2N-1 such centers.

You might be asking why there are 2N-1 but not N centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as “abba”) and its center are between the two ‘b’s.

Since expanding a palindrome around its center could take O(N) time, the overall complexity is O(N2).

 

 1 class Solution {
 2 public:
 3     
 4     string expandAroundCenter(string s, int c1, int c2) {
 5         
 6         int l = c1, r = c2;
 7         int n = s.length();
 8         
 9         while (l >= 0 && r <= n-1 && s[l] == s[r]) {
10             
11             l--;
12             r++;
13         }
14         return s.substr(l+1, r-l-1);
15     }
16     
17     
18     string longestPalindrome(string s) {
19         
20         int n = s.length();
21         
22         if (n == 0) return "";
23         string longest = s.substr(0, 1);  // a single char itself is a palindrome
24         
25         for (int i = 0; i < n-1; i++) {
26             
27             string p1 = expandAroundCenter(s, i, i);
28             if (p1.length() > longest.length())
29                 longest = p1;
30             string p2 = expandAroundCenter(s, i, i+1);
31             if (p2.length() > longest.length())
32                 longest = p2;
33         }
34         
35         return longest;
36     }
37 };

 

posted on 2013-05-13 09:49  tanghulu321  阅读(135)  评论(0编辑  收藏  举报