矩阵乘法

1.定义:(来自百度)

基本定义

  它是这样定义的,只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×n的矩阵a(m,n)左乘一个n×p的矩阵b(n,p),会得到一个m×p的矩阵c(m,p),满足

 

  矩阵乘法满足结合律,但不满足交换律

 

  一般的矩乘要结合快速幂才有效果。(基本上所有矩阵乘法都要用到快速幂的)

 

  在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:

2.应用:

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分广泛。

3.举例

十个利用矩阵乘法解决的题目:

http://www.matrix67.com/blog/archives/276

http://baike.baidu.com/view/2455255.htm

posted on 2012-08-16 19:52  more think, more gains  阅读(320)  评论(0编辑  收藏  举报

导航