朴素叶贝斯算法

111

# coding=utf-8
from numpy import *


def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec


# 创建一个带有所有单词的列表
def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)


def setOfWords2Vec(vocabList, inputSet):
retVocabList = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
retVocabList[vocabList.index(word)] = 1
else:
print ('word ', word, 'not in dict')
return retVocabList


# 另一种模型
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec


def trainNB0(trainMatrix, trainCatergory):
numTrainDoc = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCatergory) / float(numTrainDoc)
# 防止多个概率的成绩当中的一个为0
p0Num = ones(numWords)
p1Num = ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDoc):
if trainCatergory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num / p1Denom) # 处于精度的考虑,否则很可能到限归零
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive



def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) # element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0


def testingNB():
listOPosts, listClasses = loadDataSet() ##这个是模型数据及结果,例子中有6行
myVocabList = createVocabList(listOPosts) ##将模型中的所有数据转换为一个list ['park', 'so', 'take', 'food', 'mr'...]
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) ##先设置一个全为零的和上面一样的长的list,将有词的位置赋值为1 ,循环6次,所以得到6条很长的
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)) ##主要运算的地方
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)) ##主要运算的地方
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))


def main():
testingNB()


if __name__ == '__main__':
main()

 

posted @ 2018-01-09 18:00  糖饼好吃  阅读(440)  评论(0编辑  收藏  举报