【阅读笔记】Ranking Relevance in Yahoo Search (四 / 完结篇)—— recency-sensitive ranking

7. RECENCY-SENSITIVE RANKING

 作用:

为recency-sensitive的query提高排序质量;

对于这类query,用户不仅要相关的还需要最新的信息;

 

方法:recency-demoted relevance

1) 对每篇doc,按照它的freshness程度进行分级:very fresh, fresh, slightly out-dated, stale, 和 non-time-sensitive(与时间无关);

2) 在base relevance的基础上,根据freshness进一步调整relevance:

  VF F SO S NT
Perfect Perfect Perfect Excellent Good Perfect
Excellent Perfect Excellent Good Fair Excellent
Good Good Good Fair Bad Good
Fair Fair Fair Bad Bad Fair
Bad Bad Bad Bad Bad Bad

3)数据:“收集training data”

  • 寻找大量的近期标签是不太可能的事情,因为近期的标签总是很快就out of data;
  • 因此需要利用a large relevance dataset without recency labels and a small recency dataset for building the recency ranker;

4)公式:(待添加)

备注:

  • 其中freshness组件是基于recency dataset训练得到的:通过time-sensitive classifier来决定此component是否要被添加;
  • frel(x)代表基本的ranker;rfresh(x)代表freshness组件;cts代表time-sensitivity分类器;
  • 仅当Cts表明x为time-sensitive query-url对时,rfresh(x)才被添加;

 

重点:time-sensitive classifier的训练;freshness component;

1) time-sensitive classifier

use the recency dataset and transform the freshness labels into binary labels (eg:non-time-sensitive to negative and other labels to positive) and train a binary classfier;

2)build rfresh(x)

use the frel(x) as the base ranker, and add more trees to optimize the goal of recency-demoted relevance;

 

8. LOCATION-SENSITIVE RANKING

location-sensitive query:

一些query的搜索结果与location关系密切,此类query我们称之为location-sensitive queries, 分为:

explicit local query - queries with specific location names(eg:"restaurants Boston");

implicit local query - queries without location but with location-sensitive intention(eg:"restaurant");

 

方法:通过query和url直接的距离d(query, url)来计算;

但如果使用过去的learning-to-rank模型的话,d(query, url)特征的影响不大,所以新建以下模型用来计算 -

模型:location boosting rankin model

1)分别从query和web page中提取出location:

  • explicit local query - directly parse the location in explicit local query;
  • implicit local query - use use's location;
  • web pages - extracted based on the query-url click graph from search logs,or parse the locations from urls directly;

 2)根据各自的location,计算query和web page之间的距离:

公式(待加)

以上logistic function考虑到base relevance和location之间的距离两个因素:

  • 当doc的url地址和用户很接近,而且doc的内容也和query匹配时,对该doc进行提权操作;
  • 若doc的url地址和用户很接近,但是doc的内容与query不相关,将不对该doc提权,ranking结果此时仅有base ranking function决定;
  • 若doc的内容与query相关度很高,但doc的url地址与用户相隔很远,将不对该doc提权,ranking结果此时仅有base ranking function决定;

备注:

d^(query,url)代表d(query,url)的归一化,范围为[0,1];

fb(x)表示基于base ranking function得到的query和url的相关度;

3)参数的确定:

参数w, α, β通过以下公式由成对的数据确定 -

公式(待加)

备注:

其中P={(pi, pj)| pi > pj}是对于同一个query的一系列url pairs,pi > pj表示pi的相关性好于pj

我们通过standard gradient descent approach来得到参数的最优化结果;

 

9. CONCLUSION

  In this paper, we introduce the comprehensive relevance solutions of Yahoo search.

posted on 2018-02-08 10:20  tanfy  阅读(332)  评论(0编辑  收藏  举报

导航