hdoj 1532 Drainage Ditches(最大网络流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532
思路分析:问题为最大网络流问题,给定一个有向图,需要求解该有向图的最大网络流,使用EdmondsKarp算法求解;
需要注意输入的边中可能有重边的存在;
代码如下:
#include <queue> #include <vector> #include <cstdio> #include <climits> #include <cstring> #include <iostream> using namespace std; const int MAX_N = 200 + 10; int cap[MAX_N][MAX_N], flow[MAX_N][MAX_N]; int a[MAX_N], p[MAX_N]; inline int Min(int a, int b) { return a < b ? a : b; } int EdmondsKarp(int ver_num) { queue<int> q; int max_flow = 0; memset(flow, 0, sizeof(flow)); for (;;) { memset(a, 0, sizeof(a)); a[1] = INT_MAX; q.push(1); while (!q.empty()) { int u = q.front(); q.pop(); for (int v = 1; v <= ver_num; ++v) { if (!a[v] && cap[u][v] > flow[u][v]) { p[v] = u; q.push(v); a[v] = Min(a[u], cap[u][v] - flow[u][v]); } } } if (a[ver_num] == 0) break; for (int u = ver_num; u != 1; u = p[u]) { flow[p[u]][u] += a[ver_num]; flow[u][p[u]] -= a[ver_num]; } max_flow += a[ver_num]; } return max_flow; } int main() { int road_num, ver_num; while (scanf("%d %d", &road_num, &ver_num) != EOF) { int ver_1, ver_2, capa; memset(cap, 0, sizeof(cap)); for (int i = 0; i < road_num; ++i) { scanf("%d %d %d", &ver_1, &ver_2, &capa); cap[ver_1][ver_2] += capa; } int ans = EdmondsKarp(ver_num); printf("%d\n", ans); } return 0; }