算法导论 第6章
6.5-3
1 HEAP-MINIMUM(A) 2 return A[1] 3 4 HEAP-EXTRACT-MIN(A) 5 if A.heap-size < 1 6 error "heap underflow" 7 min = A[1] 8 A[1] = A[A.heap-size] 9 A.heap-size = A.heap-size - 1 10 MIN-HEAPIFY(A, 1) 11 return min 12 13 HEAP-DECREASE-KEY(A, i, key) 14 if key > A[i] 15 error "new key is biger than current key" 16 A[i] = key 17 while i < A.heap-size and A[PARENT(i)] > A[i] 18 exchange A[i] and A[PARENT(i)] 19 i = PARENT(i) 20 21 MIN-HEAP-INSERT(A, key) 22 A.heap-size = A.heap-size + 1 23 A[A.heap-size] = INT_MAX 24 HEAP-DECREASE-KEY(A, A.heap-size, key)
6.5-6
解答:在题目中通过交换变量A[i]与A[PARENT(i)]实现;通过借鉴插入排序的做法,令A[i] = A[PARENT(i)],直到A[PARENT(i)] > A[i], 然后再位置i上插入关键字。
6.5-7
队列的实现:以入队的时间作为关键字建立最小优先队列
栈的实现:以入队的时间作为关键字建立最大优先队列
6.5-8
假设为最大堆,在删除关键字A[i]后,由于要保持堆的结构性,选择A[A.heap-size]替代A[i];
1、若替代后,A[i] < A[PARENT(i)], 使用MAX-HEAPIFY(A, i)
2、若替代后,A[i] > A[PARENT(i)], 使用上滤技术
1 Input: A max-heap and an integers i 2 Output: The heap A with element a position i delete 3 4 A[i] = A[A.heap-size] 5 A.heap-size = A.heap-size - 1 6 key = A[i] 7 if key <= A[PARENT(i)] 8 MAX-HEAPIFY(A, i) 9 else 10 while i > 1 and A.[PARENT(i)] < key 11 A[i] = A[PARENT(i)] 12 i = PARENT(i) 13 A[i] = key
6.5-9
解答:
1、选择k个链表的第一个元素入最小堆
2、将堆中的最小元素放入排序的表中,再在最小元素所在的链表中选择下一个元素加入最小堆中
3、重复如此,直到排序完成