算法导论 12.1-4

题目:对于一棵有N个结点的树,设计在O(N)时间内完成的先序、中序与后序遍历算法

 

一、先序遍历

递归实现:

void InOrder( SearchTree T )
{
    if ( T != NULL )
    {
        Visit( T );
        InOrder( T->Left );
        InOrder( T->Right );
    }
}

非递归实现:

版本一:栈模拟(深度优先搜索)

void PreOrder( SearchTree T ) 
{
    Stack S;

    while( T != NULL || !S.Empty() )
    {
        if ( T != NULL )
        {
            S.push( T );
            Visit( T );
            T = T->Left; 
        }
        else
        {
            T = S.pop();
            T = T->Right;
        }
    }
}

版本二:栈模拟(深度优先搜索)

void PreOrder( SearchTree T )
{
    Stack S;

    if ( T != NULL )
    {
        S.Push( T );
        while ( !S.Empty() )
        {
            SearchTree TNode = S.Pop(); 
            Visit( TNode );

       if ( TNode->Right != NULL ) S.Push( TNode
->Right );
       if ( TNode->Left != NULL ) S.Push( TNode
->Left ); } } }

版本三:设置父节点回溯

void PreOrder( SearchTree T )
{
    while ( T != NULL )
    {
        if( !T->Visited )
        {   
            Visit( T );
            T->Visited = true;
        }
        
        if ( T->Left != NULL && !T->Left->Visited )
        {
            T = T->Left;
        }
        else
        if( T->Right != NULL && !T->Right->Visited )
        {
            T = T->Right;
        }
        else
            T = T->Parent;
    }
}

 

二、中序遍历

递归版本:

void InOrder( SearchTree T )
{
    if ( T != NULL )
    {
        InOrder( T->Left );
        Visit( T );
        InOrder( T->Right );
    }
}

 非递归版本一:深度优先搜索

void InOrder( SearchTree T ) 
{
    Stack S;

    while( T != NULL || !S.Empty() )
    {
        if ( T != NULL )
        {
            S.push( T );
            T = T->Left; 
        }
        else
        {
            T = S.pop();
            Visit( T );
            T = T->Right;
        }
    }
}

 非递归版本二:深度优先搜索

void InOrder( SearchTree T )
{
    Stack S;

    
    if( T != NULL )
        S.Push( T );
    
    T->ChildPushed = false;
    while ( !S.Empty() )
    {
        SearchTree TNode = S.Pop(); 
        if ( TNode->ChildPushed )
        {   
            // 如果标识位为true,则表示其左右子树都已经入栈,那么现在就需要访问该节点了
            Visit( TNode );        
        }
        else
        {   
            // 左右子树尚未入栈,则依次将 右节点,根节点,左节点 入栈
            if ( TNode->Right != NULL )
            {
                // 左右子树均设置为false
                TNode->Right->ChildPushed = false; 
                S.Push( TNode->Right );
            }
            TNode->ChildPushed = true;  // 根节点标志位为true
            S.Push( TNode );
            if ( TNode->Left != NULL )
            {
                TNode->Left->ChildPushed = false;
                S.Push( TNode->Left );
            }
        }
    }
}

 版本三:设置父节点回溯

void InOrder( SearchTree T )
{
    while ( T != NULL )
    {
        while ( T->Left != NULL && !T->Left->Visited )
            T = T->Left;

        if ( !T->Visited )
        {
            Visit( T );
            T->Visited = true;
        }

        if ( T->Right != NULL && !T->Right->Visited )
            T = T->Right;
        else
            T = T->Parent;
    }
}

 

三、后序遍历

递归版本:

void PostOrder( SearchTree T )
{
    if ( T != NULL )
    {
        PostOrder( T->Left );
        PostOrder( T->Right );
        Visit( T );
    }
}

 非递归版本:深度优先搜索

void PostOrder( SearchTree T )
{
    Stack S;
    
    if( T != NULL )
        S.Push( T );
    
    T->ChildPushed = false;
    while ( !S.Empty() )
    {
        SearchTree TNode = S.Pop(); 
        if ( TNode->ChildPushed )
        {   
            // 如果标识位为true,则表示其左右子树都已经入栈,那么现在就需要访问该节点了
            Visit( TNode );
        }
        else
        {   
            TNode->ChildPushed = true;  // 根节点标志位为true
            S.Push( TNode );

            // 左右子树尚未入栈,则依次将根结点,右节点,左节点入栈
            if ( TNode->Right != NULL )
            {
                // 左右子树均设置为false
                TNode->Right->ChildPushed = false; 
                S.Push( TNode->Right );
            }

            if ( TNode->Left != NULL )
            {
                TNode->Left->ChildPushed = false;
                S.Push( TNode->Left );
            }
        }
    }
}

 

算法时间复杂度分析:以上算法时间复杂度均为O(N)

 

posted @ 2014-10-18 17:21  Leptus  阅读(318)  评论(0编辑  收藏  举报