上篇博客(语音识别传统方法(GMM+HMM+NGRAM)概述)说到我们team要做语音识别相关的项目,而我们公司的芯片是用在终端上的,即我们要做终端上的语音识别。由于目前终端(如手机)上的CPU还不足够强劲,不能让语音识别的各种算法跑在终端上,尤其现在语音识别都是基于深度学习来做了,更加不能跑在终端上,所以目前主流的语音识别方案是声音采集和前处理在终端上做,语音识别算法则放在服务器(即云端)上跑。虽然这种方案有泄漏隐私(把终端上的语音数据发给服务器)和没有网络不能使用等缺点,但也是不得已而为之的,相信在不久的将来等终端上的CPU足够强劲了会把语音识别的所有实现都放在终端上的。
是不是意味着终端上做不了语音识别相关的算法了?其实也不是,语音唤醒功能是需要在终端上实现的。语音唤醒是指设定一个唤醒词,如Siri的“Hi Siri”,只有用户说了唤醒词后终端上的语音识别功能才会处于工作状态,否则处于休眠状态。这样做主要是为了降功耗,增加续航时间。目前很多终端都是靠电池供电的,对功耗很敏感,是不允许让语音识别功能一直处于工作状态的。为此我就对语音唤醒技术做了一番调研。依旧是看各种文档和博客,然后进行梳理和总结,形成PPT,给组内同学介绍。在此我也把PPT贴出来,给有需要或感兴趣的朋友看看,有什么不正确的也请指正。我的PPT中的一些图是用的文档或他人博客里的,谢谢这些原作者。以下就是我的关于语音唤醒技术的PPT。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
2018-05-28 移动通信最先进的音频编解码器EVS及用好要做的工作