Java并发之线程池详解

带着问题阅读

1、什么是池化,池化能带来什么好处

2、如何设计一个资源池

3、Java的线程池如何使用,Java提供了哪些内置线程池

4、线程池使用有哪些注意事项

池化技术

池化思想介绍

池化思想是将重量级资源预先准备好,在使用时可重复使用这些预先准备好的资源。

池化思想的核心概念有:

  • 资源创建/销毁开销大
  • 提前创建,集中管理
  • 重复利用,资源可回收

例如大街上的共享单车,用户扫码开锁,使用完后归还到停放点,下一个用户可以继续使用,共享单车由厂商统一管理,为用户节省了购买单车的开销。

池化技术的应用

常见的池化技术应用有:资源池、连接池、线程池等。

  • 资源池

    在各种电商平台大促活动时,平台需要支撑平时几十倍的流量,因此各大平台在需要提前准备大量服务器进行扩容,在活动完毕以后,扩容的服务器资源又白白浪费。将计算资源池化,在业务高峰前进行分配,高峰结束后提供给其他业务或用户使用,即可节省大量消耗,资源池化也是云计算的核心技术之一。

  • 连接池

    网络连接的建立和释放也是一个开销较大的过程,提前在服务器之间建立好连接,在需要使用的时候从连接池中获取,使用完毕后归还连接池,以供其他请求使用,以此可节省掉大量的网络连接时间,如数据库连接池、HttpClient连接池。

  • 线程池

    线程的建立销毁都涉及到内核态切换,提前创建若干数量的线程提供给客户端复用,可节约大量的CPU消耗以便处理业务逻辑。线程池也是接下来重点要讲的内容。

如何设计一个线程池

设计一个线程池,至少需要提供的核心能力有:

  • 线程池容器:用于容纳初始化时预先创建的线程。
  • 线程状态管理:管理池内线程的生命周期,记录每个线程当前的可服务状态。
  • 线程请求管理:对调用端提供获取和归还线程的接口。
  • 线程耗尽策略:提供策略以处理线程耗尽问题,如拒绝服务、扩容线程池、排队等待等。

基于以上角度,我们来分析Java是如何设计线程池功能的。

Java线程池解析

ThreadPoolExecutor使用介绍

大象装冰箱总共分几步

// 1.创建线程池
ThreadPoolExecutor threadPool = 
    new ThreadPoolExecutor(1, 1, 1L, TimeUnit.MINUTES, new LinkedBlockingQueue<>());
// 2.提交任务
threadPool.execute(new Runnable() {
    @Override
    public void run() {
        System.out.println("task running");
    }
}});
// 3.关闭线程池
threadPool.shutDown();

Java通过ThreadPoolExecutor提供线程池的实现,如示例代码,初始化一个容量为1的线程池、然后提交任务、最后关闭线程池。

ThreadPoolExecutor的核心方法主要有

  • 构造函数:ThreadPoolExecutor提供了多个构造函数,以下对基础构造函数进行说明。

    public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler)
    
    • corePoolSize:线程池的核心线程数。池内线程数小于corePoolSize时,线程池会创建新线程执行任务。

    • maximumPoolSize:线程池的最大线程数。池内线程数大于corePoolSizeworkQueue任务等待队列已满时,线程池会创建新线程执行队列中的任务,直到线程数达到maximumPoolSize为止。

    • keepAliveTime:非核心线程的存活时长。池内超过corePoolSize数量的线程可存活的时长。

    • unit:非核心线程存活时长单位。与keepAliveTime取值配合,如示例代码表示1分钟。

    • workQueue:任务提交队列。当无空闲核心线程时,存储待执行任务。

      类型 作用
      ArrayBlockingQueue 数组结构的有界阻塞队列
      LinkedBlockingQueue 链表结构的阻塞队列,可设定是否有界
      SynchronousQueue 不存储元素的阻塞队列,直接将任务提交给线程池执行
      PriorityBlockingQueue 支持优先级的无界阻塞队列
      DelayQueue 支持延时执行的无界阻塞队列
    • threadFactory:线程工厂。用于创建线程对象。

    • handler:拒绝策略。线程池线程数量达到maximumPoolSizeworkQueue已满时的处理策略。

      类型 作用
      AbortPolicy 拒绝并抛出异常。默认
      CallerRunsPolicy 由提交任务的线程执行任务
      DiscardOldestPolicy 抛弃队列头部任务
      DiscardPolicy 抛弃该任务
  • 执行函数:executesubmit,主要分别用于执行RunnableCallable

    // 提交Runnable
    void execute(Runnable command);
    
    // 提交Callable并返回Future
    <T> Future<T> submit(Callable<T> task);
    
    // 提交Runnable,执行结束后Future.get会返回result
    <T> Future<T> submit(Runnable task, T result);
    
    // 提交Runnable,执行结束后Future.get会返回null
    Future<?> submit(Runnable task);
    
  • 停止函数:shutDownshutDownNow

    // 不再接收新任务,等待剩余任务执行完毕后停止线程池
    void shutdown();
    
    // 不再接收新任务,并尝试中断执行中的任务,返回还在等待队列中的任务列表
    List<Runnable> shutdownNow();
    

内置线程池使用

To be useful across a wide range of contexts, this class provieds many adjustable parameters and extensibility hooks. However, programmers are urged to use the more convenient {@link Executors} factory methods {@link Executors#newCachedThreadPool} (unbounded thread poll, with automatic thread reclamation), {@link Executors#newFixedThreadPool} (fixed size thread pool) and {@link Executors#newSingleThreadExecutor}(single background thread), that preconfigure settings for the most common usage scenarios.

由于ThreadPoolExecutor参数复杂,Java提供了三种内置线程池newCachedThreadPoolnewFixedThreadPoolnewSingleThreadExecutor应对大多数场景。

  • Executors.newCachedThreadPool()无界线程池,核心线程池大小为0,最大为Integer.MAX_VALUE,因此严格来讲并不算无界。采用SynchronousQueueworkQueue,意味着任务不会被阻塞保存在队列,而是直接递交到线程池,如线程池无可用线程,则创建新线程执行。

    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, 
                                      new SynchronousQueue<Runnable>());
    }
    
  • Executors.newFixedThreadPool(int nThreads)固定大小线程池,其中coreSizemaxSize相等,且过期时间为0,表示经过一定数量任务提交后,线程池将始终维持在nThreads数量大小,不会新增也不会回收线程。

    public static ExecutorService new FixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads nThreads, 0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
    
  • Executors.newSingleThreadExecutor()单线程池,参数与fixedThreadPool类似,只是将数量限制在1,单线程池主要避免重复创建销毁线程对象,也可用于串行化执行任务。不同与其他线程池,单线程池采用FinallizableDelegatedExecutorServiceThreadPoolExecutor对象进行包装,感兴趣的同学可以看下源码,其方法实现仅仅是对被包装对象方法的直接调用。包装对象主要用于避免用户将线程池强制转换为ThreadPoolExecutor来修改线程池大小

    public static ExecutorService newSingleThreadExecutor() {
        return new FinallizableDelegatedExecutorService(
          (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, 
                                    new LinkedBlockQueue<Runnable>()))
        );
    }
    

ThreadPoolExecutor解析

整体设计

线程池继承关系

ThreadPoolExecutor基于ExecutorService接口实现提交任务,未采取常规资源池获取/归还资源的形式,整个线程池和线程的生命周期都由ThreadPoolExecutor进行管理,线程对象不对外暴露;ThreadPoolExecutor的任务管理机制类似于生产者消费者模型,其内部维护一个任务队列和消费者,一般情况下,任务被提交到队列中,消费线程从队列中拉取任务并将其执行。

线程池生命周期

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

private static int runStateOf(int c)     { return c & ~CAPACITY; } //计算当前运行状态
private static int workerCountOf(int c)  { return c & CAPACITY; }  //计算当前线程数量
private static int ctlOf(int rs, int wc) { return rs | wc; }   //通过状态和线程数生成ctl

TreadPoolExecutor通过ctl维护线程池的状态和线程数量,其中高3位存储运行状态,低29位存储线程数量。

位运算操作推荐参考第三篇文章。

线程池设定了RUNNINGSHUTDOWNSTOPTIDYINGTERMINATED五种状态,其转移图如下:

在这5种状态中,只有RUNNING时线程池可接收新任务,其余4种状态在调用shutDownshutDownNow后触发转换,且在这4种状态时,线程池均不再接收新任务。

任务管理解析

// 用于存放提交任务的队列
private final BlockingQueue<Runnable> workQueue;

// 用于保存池内的工作线程,Java将Thread包装成Worker存储
private final HashSet<Worder> workers = new HashSet<Worker>();

ThreadPoolExecutor主要通过workQueueworkers两个字段用于管理和执行任务。

线程池任务执行流程如图,结合ThreadPoolExecutor.execute源码,对任务执行流程进行说明:

  • 当任务提交到线程池时,如果当前线程数量小于核心线程数,则会将为该任务直接创建一个worker并将任务交由worker执行。

    if (workerCountOf(c) < corePoolSize) {
        // 创建新worker执行任务,true表示核心线程
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    
  • 当已经达到核心线程数后,任务会提交到队列保存;

    // 放入workQueue队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // 这里采用double check再次检测线程池状态
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 避免加入队列后,所有worker都已被回收无可用线程
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    
  • 如果队列已满,则依据最大线程数量创建新worker执行。如果新增worker失败,则依据设定策略拒绝任务。

    // 接上,放入队列失败
    // 添加新worker执行任务,false表示非核心线程
    else if (!addWorker(command, false))
        // 如添加失败,执行拒绝策略
        reject(command);
    

woker对象

ThreadPoolExecutor没有直接使用Thread记录线程,而是定义了worker用于包装线程对象。

private final class Worker extends AbstractQueuedSynchronizer implements Runnable {
    ...
    final Thread thread;
    
    Runnable firstTask;
    
    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }
    
    // worker对象被创建后就会执行
    public void run() {
        runWorker(this);
    }
}

worker对象通过addWorker方法创建,一般会为其指定一个初始任务firstTask,当worker执行完毕以后,worker会从阻塞队列中读取任务,如果没有任务,则该worker会陷入阻塞状态给出worker的核心逻辑代码:

private boolean addWorker(Runnable firstTask, boolean core) {
    ...
    // 指定firstTask,可能为null
    w = new Worker(firstTask);
    ...
    if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) {
        if (t.isAlive()) // precheck that t is startable
            throw new IllegalThreadStateException();
        workers.add(w);
        workerAdded = true;
    }
    ...
    // 执行新添加的worker
    if (workerAdded) {
        t.start();
        workerStarted = true;
    }
}


final void runWorker(Worker w) {
    // 等待workQueue的任务
    while (task != null || (task = getTask()) != null) {
    	...
    }
}

private Runnable getTask() {
    ...
    for (;;) {
        ...
        // 如果是普通工作线程,则根据线程存活时间读取阻塞队列
        // 如果是核心工作线程,则直接陷入阻塞状态,等待workQueue获取任务
        Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
        ...
    }
}

如下图,任务提交后触发addWorker创建worker对象,该对象执行任务完毕后,则循环获取队列中任务等待执行。

Java线程池实践建议

不建议使用Exectuors

线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。《阿里巴巴开发手册》

虽然Java推荐开发者直接使用Executors提供的线程池,但实际开发中通常不使用。主要考虑问题有:

  • 潜在的OOM问题

    CachedThreadPool将最大数量设置为Integer.MAX_VALUE,如果一直提交任务,可能造成Thread对象过多引起OOMFixedThreadPoolSingleThreadPoo的队列LinkedBlockingQueue无容量限制,阻塞任务过多也可能造成OOM

  • 线程问题定位不便

    由于未指定ThreadFactory,线程名称默认为pool-poolNumber-thread-thredNumber,线程出现问题后不便定位具体线程池。

  • 线程池分散

    通常在完善的项目中,由于线程是重量资源,因此线程池由统一模块管理,重复创建线程池容易造成资源分散,难以管理。

线程池大小设置

通常按照IO繁忙型和CPU繁忙型任务分别采用以下两个普遍公式。

\[N_{thread} = N_{cpu} * 2 \\ N_{thread} = N_{cpu} + 1 \]

在理论场景中,如一个任务IO耗时40ms,CPU耗时10ms,那么在IO处理期间,CPU是空闲的,此时还可以处理4个任务(40/10),因此理论上可以按照IO和CPU的时间消耗比设定线程池大小。

\[Ratio = (Time_{io} + Time_{cpu}) / Time_{cpu} \\ N_{thread} = (Ratio + 1) * N_{cpu} \]

《JAVA并发编程实践》中还考虑数量乘以目标CPU的利用率

在实际场景中,我们通常无法准确测算IO和CPU的耗时占比,并且随着流量变化,任务的耗时占比也不能固定。因此可根据业务需求,开设线程池运维接口,根据线上指标动态调整线程池参数。

推荐参考第二篇美团线程池应用

线程池监控

ThreadPoolExecutor提供以下方法监控线程池:

  • getTaskCount() 返回被调度过的任务数量

  • getCompletedTaskCount() 返回完成的任务数量

  • getPoolSize() 返回当前线程池线程数量

  • getActiveCount() 返回活跃线程数量

  • getQueue()获取队列,一般用于监控阻塞任务数量和队列空间大小

参考

posted @ 2021-09-02 19:18  拉夫德鲁  阅读(401)  评论(0编辑  收藏  举报