Dijkstra算法和Floyd算法的正确性证明
说明:
本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节
本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正
-------------------------------------------
Dijkstra算法和Floyd算法用于求解连通图中任意两个顶点之间的最短路径
Dijksra算法从一个顶点v0出发,每次为一个顶点vi确定到达v0的最小路径
Dijkstra算法用distance[i]记录顶点vi到v0的最短路径,用path[i]记录在最短路径中vi顶点的前继顶点,另外再用found[i]来标志顶点vi的最短路径是否已经确定
Dijkstra算法做出了这样一个判断:每次从尚未确定最小路径的顶点中(一下简称 未定顶点)挑选一个distance值最小的顶点vj,则该顶点对应的distance[j]必定是vj的真实的最小路径长度,下面证明这个判断:
对于任意一个未定顶点,其最小路径中必定至少包含一个已定顶点(至少会包含v0),则该路径中至少有一个未定顶点vm以一个已定顶点vn为前继顶点,而length(v0-vn-vm) >= diatance[m] >= distance[j],也就说任意一个未定顶点的最小路径长必定不小于distance[j],由此就可以确定distance[j]必定是vj真实的最小路径长
Dijkstra算法的复杂度是n^2,每次确定一个顶点的最短路径,而确定一个顶点的最短路径需要遍历并比较distance数组,并且确定之后需要遍历更新distance数组,所以是n*n的开销
--------------------------------
Floyd算法的执行逻辑甚为简单,包含了三个循环的嵌套;其思路是遍历图中的每一个点,针对这个点vm,遍历图中任意两个顶点的两两组合vi和vj,比较vi和vj当前的最短连接和通过vm的连接的大小,并且把新的当前最短连接重置为其中更小的那个值;这样一圈遍历下来,就可以保证得到图中任意两个顶点之间的最小距离
这看起来并不靠谱,因为在最初vi和vm、vj和vm之间的最小路径都尚未安全确定下来的时候,如何能够马上就拿来比较,这时的比较不应该是无效的吗?
但是事实上并不需要每一步都实现严格的有效的比较,因为全部遍历下来之后,肯定会发生一次有效的比较
下面给出证明:
假设vi、vj之间的最小路径一共包括x个其它顶点,显然这条路径也确定了其中任何两个顶点之间的最小路径,否则比如vm、vn之间有不属于当前路径的最小子路径,则用该子路径替代当前的子路径,就可以得到更小的vi、vj之间的最小路径
对于这条路径上的任意三个相邻(至少会有一组相邻三顶点)顶点vm1、vm2、vm3,当遍历到vm2时,显然此时vm1-vm2-vm3这条最小子路径就会被连接起来(因为这条路径必定是vm1到vm3的最小子路径);事实上,当遍历到这条最小路径上的任意一个顶点的时候(除了vi、vj),就会把相邻的两个顶点连接起来;当所有顶点都被遍历之后,这x个顶点也必定已经把其在最小路径上相邻的顶点全都连接完毕,包括分别在两端的vi和vj顶点;换句话说,vi和vj之间的最小子路径必定已经被找到
Floyd算法的复杂度为n^3