php-fpm定时器
php-fpm有三种定时器
1)主进程接收到用户的信号,例如sigusr,主进程执行kill(子进程号,sigquit),的同时,设置定时器,在一个无限循环里如果当前时间 大于或等于 该定时器的过期时间,则主进程执行kill(子进程号,sigterm);
2)对于在php-fpm里设置了request_terminate_timeout 和request_slowlog_timeout
注:set_time_limit()和max_execution_time只影响脚本本身执行的时间。
(这两个参数在php.ini中)任何发生在诸如使用system()的系统调用,流操作,数据库操作等的脚本执行的最大时间不包括其中.
建立定时器是在函数fpm_event_loop中的fpm_pctl_heartbeat函数,调用前有个判断条件 fpm_globals.heartbeat需要大于0
在解析php-fpm.conf文件中,fpm_globals.heartbeat最终为request_terminate_timeout和request_slowlog_timeout较小的一个
static int fpm_conf_process_all_pools(){ //省略无关代码 if (wp->config->request_terminate_timeout) { fpm_globals.heartbeat = fpm_globals.heartbeat ? MIN(fpm_globals.heartbeat, (wp->config->request_terminate_timeout * 1000) / 3) : (wp->config->request_terminate_timeout * 1000) / 3; } if (wp->config->request_slowlog_timeout) { fpm_globals.heartbeat = fpm_globals.heartbeat ? MIN(fpm_globals.heartbeat, (wp->config->request_slowlog_timeout * 1000) / 3) : (wp->config->request_slowlog_timeout * 1000) / 3; } }
/* a minimum of 130ms heartbeat for pctl */
#define FPM_PCTL_MIN_HEARTBEAT (130)
void fpm_pctl_heartbeat(struct fpm_event_s *ev, short which, void *arg) /* {{{ */ { static struct fpm_event_s heartbeat; struct timeval now; if (fpm_globals.parent_pid != getpid()) { return; /* sanity check */ } if (which == FPM_EV_TIMEOUT) { fpm_clock_get(&now); fpm_pctl_check_request_timeout(&now); return; } /* ensure heartbeat is not lower than FPM_PCTL_MIN_HEARTBEAT */ //这里又和默认的相比,取最大的 fpm_globals.heartbeat = MAX(fpm_globals.heartbeat, FPM_PCTL_MIN_HEARTBEAT); /* first call without setting to initialize the timer */ zlog(ZLOG_DEBUG, "heartbeat have been set up with a timeout of %dms", fpm_globals.heartbeat); fpm_event_set_timer(&heartbeat, FPM_EV_PERSIST, &fpm_pctl_heartbeat, NULL); fpm_event_add(&heartbeat, fpm_globals.heartbeat); }
3)对于dynamic方式的子进程,需要定时检查,例如:当空闲的子进程个数小于允许最小的空闲子进程个数时,需要fork;当空闲的子进程个数大于允许的最大的空闲子进程个数时,需要kill掉
/* 1s (in ms) heartbeat for idle server maintenance */ #define FPM_IDLE_SERVER_MAINTENANCE_HEARTBEAT (1000)
即每1S执行一次
假设当前时间为10:00:00,那么超时时间为10:01:00, 在fpm_event_loop这个无限循环中,当 当前 时间 大于或等于这个超时时间时,会触发fpm_pctl_perform_idle_server_maintenance这个函数,当空闲的子进程个数小于允许最小的空闲子进程个数时,需要fork;当空闲的子进程个数大于允许的最大的空闲子进程个数时,需要kill掉,执行完函数后,假设当前时间为10:05:00,那么下一次超时时间为10:06:00,依次类推 ,参考这里
建立定时器是在函数fpm_event_loop中的fpm_pctl_perform_idle_server_maintenance_heartbeat(NULL, 0, NULL)
void fpm_pctl_perform_idle_server_maintenance_heartbeat(struct fpm_event_s *ev, short which, void *arg) /* {{{ */ { static struct fpm_event_s heartbeat; struct timeval now; if (fpm_globals.parent_pid != getpid()) { return; /* sanity check */ } if (which == FPM_EV_TIMEOUT) { fpm_clock_get(&now); if (fpm_pctl_can_spawn_children()) { fpm_pctl_perform_idle_server_maintenance(&now); /* if it's a child, stop here without creating the next event * this event is reserved to the master process */ if (fpm_globals.is_child) { return; } } return; } /* first call without setting which to initialize the timer */ fpm_event_set_timer(&heartbeat, FPM_EV_PERSIST, &fpm_pctl_perform_idle_server_maintenance_heartbeat, NULL); fpm_event_add(&heartbeat, FPM_IDLE_SERVER_MAINTENANCE_HEARTBEAT); }
因为是第一次调用 ,所以直接走到倒数第二,第三行, FPM_EV_TIMEOUT 为1
#define FPM_EV_TIMEOUT (1 << 0) #define FPM_EV_READ (1 << 1) #define FPM_EV_PERSIST (1 << 2) #define FPM_EV_EDGE (1 << 3)
fpm_event_set_timer其实是个宏,
#define fpm_event_set_timer(ev, flags, cb, arg) fpm_event_set((ev), -1, (flags), (cb), (arg))
fpm_event_set中的fd参数传的是-1,因为是定时器,故没有文件描述符,并且调用回调函数
得到现在当前时间,由于是每1分钟执行一次,所以超时时间是当前时间+1分钟
int fpm_event_set(struct fpm_event_s *ev, int fd, int flags, void (*callback)(struct fpm_event_s *, short, void *), void *arg) /* {{{ */ { if (!ev || !callback || fd < -1) { return -1; } memset(ev, 0, sizeof(struct fpm_event_s)); ev->fd = fd; ev->callback = callback; ev->arg = arg; ev->flags = flags; return 0; } /* }}} */ int fpm_event_add(struct fpm_event_s *ev, unsigned long int frequency) /* {{{ */ { struct timeval now; struct timeval tmp; if (!ev) { return -1; } ev->index = -1; /* it's a triggered event on incoming data */ if (ev->flags & FPM_EV_READ) { ev->which = FPM_EV_READ; if (fpm_event_queue_add(&fpm_event_queue_fd, ev) != 0) { return -1; } return 0; } /* it's a timer event */ ev->which = FPM_EV_TIMEOUT; fpm_clock_get(&now); if (frequency >= 1000) { tmp.tv_sec = frequency / 1000; tmp.tv_usec = (frequency % 1000) * 1000; } else { tmp.tv_sec = 0; tmp.tv_usec = frequency * 1000; } ev->frequency = tmp; fpm_event_set_timeout(ev, now); //#define fpm_event_set_timeout(ev, now) timeradd(&(now), &(ev)->frequency, &(ev)->timeout); if (fpm_event_queue_add(&fpm_event_queue_timer, ev) != 0) { return -1; } return 0; }
将该定时器放到定时器专属的队列中
static int fpm_event_queue_add(struct fpm_event_queue_s **queue, struct fpm_event_s *ev) /* {{{ */ { struct fpm_event_queue_s *elt; if (!queue || !ev) { return -1; } if (fpm_event_queue_isset(*queue, ev)) { return 0; } if (!(elt = malloc(sizeof(struct fpm_event_queue_s)))) { zlog(ZLOG_SYSERROR, "Unable to add the event to queue: malloc() failed"); return -1; } elt->prev = NULL; elt->next = NULL; elt->ev = ev; if (*queue) { (*queue)->prev = elt; elt->next = *queue; } *queue = elt; /* ask the event module to add the fd from its own queue */ //定时器不会走到这里 if (*queue == fpm_event_queue_fd && module->add) { module->add(ev); } return 0; }
定时器队列结构体, static struct fpm_event_queue_s *fpm_event_queue_timer = NULL; 是个全局变量
typedef struct fpm_event_queue_s { struct fpm_event_queue_s *prev; struct fpm_event_queue_s *next; struct fpm_event_s *ev; } fpm_event_queue;