小隐的博客

人生在世,笑饮一生
  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

用numpy读取结构化二进制文件

Posted on 2023-05-16 15:05  隐客  阅读(63)  评论(0编辑  收藏  举报

之前做了一个读取TDX数据的代码,如下:

def stock_lc5(self,filepath, name ):
        file_path=filepath+"\\" + name
        file_size = os.path.getsize(file_path)
        pos=0

        if(file_size>16000):
            pos=file_size-16000
        with open(file_path, 'rb') as f:   
            f.seek(pos, os.SEEK_SET)

              loc=0
              while True:
                  # print ("loc",loc)
                  li2 = f.read(32)  # 读取一个5分钟数据
                  if not li2:  # 如果没有数据了,就退出
                      break
                  data2 = struct.unpack('HHffffllf', li2)  # 解析数据
                  date_str  = self.get_date_str(data2[0], data2[1])  # 解析日期和分时                
                  data2_list = list(data2)  # 将数据转成list
                  data2_list[1] = date_d  # 将list二个元素更改为日期 时:分
                  del (data2_list[0])  # 删除list第一个元素
                  data2_list.append(date_str)
 
   
                 df.loc[loc]=data2_list
                 loc+=1
               print(df)
            df.to_csv(file_path+".csv")
            print(name," convert is done\n")

我去,那个速度,酸爽,想想还是用结构化的来读比较快

 

    def stock_lc5(self,filepath, name):
        file_path=filepath+"\\" + name
        file_size = os.path.getsize(file_path)
        pos=0
        dtype = np.dtype([
            ("date_int", np.uint16),
            ("time_int", np.uint16),
            ("open", np.float32),
            ("high", np.float32),
            ("low", np.float32),
            ("close", np.float32),
            ("amount", np.int32),
            ("volume", np.int32),
            ("other", np.float32),
        ])
        if(file_size>16000):
            pos=file_size-16000
        with open(file_path, 'rb') as f:   
            f.seek(pos, os.SEEK_SET)
            data = np.fromfile(f, dtype=dtype)
            df=pd.DataFrame(data,columns=["date_int","time_int","open","high","low","close","amount","volume","other"])
             
            df['eob']= df.apply(lambda row:self.get_date_str(row["date_int"],row ["time_int"]), axis=1)
 
            df.to_csv(file_path+".csv")
            print(name," convert is done\n")

这速度,真的爽爆了

QQ交流