pip install scipy
pip install matplotlib
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | from scipy import signal import numpy as np import matplotlib.pyplot as plt data_x = np.arange(start = 0 , stop = 40 , step = 1 , dtype = 'int' ) data_y = np.array([ 98 , 96 , 97 , 100 , 95 , 105 , 75 , 50 , 45 , 42 , 51 , 85 , 90 , 92 , 91 , 89 , 101 , 62 , 65 , 52 , 47 , 58 , 55 , 75 , 89 , 92 , 94 , 91 , 89 , 79 , 85 , 65 , 42 , 55 , 48 , 50 , 85 , 88 , 95 , 100 ]) # Find peaks # order:两侧使用多少点进行比较 peak_indexes = signal.argrelextrema(data_y, np.greater, order = 1 ) peak_indexes = peak_indexes[ 0 ] # Find valleys # order:两侧使用多少点进行比较 valley_indexes = signal.argrelextrema(data_y, np.less, order = 1 ) valley_indexes = valley_indexes[ 0 ] (fig, ax) = plt.subplots() # Plot all data ax.plot(data_x, data_y) # Plot peaks peak_x = peak_indexes peak_y = data_y[peak_indexes] ax.scatter(peak_x, peak_y, marker = 'o' , color = 'red' , label = "Peaks" ) # Plot valleys valley_x = valley_indexes valley_y = data_y[valley_indexes] ax.scatter(valley_x, valley_y, marker = 'o' , color = 'green' , label = "Valleys" ) # 添加标题 plt.title( 'Find peaks and valleys using argrelextrema()' ) # 添加图例 plt.legend(loc = 'best' ) # 保存图像 plt.savefig( 'peaks-valleys.png' ) # 显示图像 plt.show() |
设置order = 1,运行结果:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
2012-05-18 通达信 公式用C#来写