哈尔滨工业大学计算机学院-模式识别-课程总结(一)-贝叶斯决策理论

1. 贝叶斯决策理论

贝叶斯决策理论是解决分类问题的一种基本统计途径,其出发点是利用概率的不同分类决策,与相应决策所付出的代价进行折中,它假设决策问题可以用概率的形式描述,并且假设所有有关的概率结构均已知。

2. 各种概率及其关系

  • 先验概率:

\[P(\omega_i) \]

  • 后验概率:

\[P(\omega_i | x) \]

  • 类条件概率:

\[P(x |\omega_i ) \]

  • 贝叶斯公式:

\[P \left( \omega _ { i } | \mathbf { x } \right) = \frac { P ( \mathbf { x } | \omega _ { i } ) P \left( \omega _ { i } \right) } { P ( \mathbf { x } ) } \]

3. 最小错误率准则

  • 判别\(x\)属于\(w=\omega_i\)的错误率:

\[P ( \text { error } | \mathbf { x } ) = \sum _ { j \neq i } P \left( \omega _ { j } | \mathbf { x } \right) = 1 - P \left( \omega _ { i } | \mathbf { x } \right) \]

  • 判别准则:

\[i = \arg \max _ { 1 \leq j \leq c } P \left( \omega _ { j } | \mathbf { x } \right) \]

\(c\)是所有类别总数,根据该将\(x\)归为\(\omega_i\)

  • 根据贝叶斯公式,构造出判别函数\(g _ { j } ( \mathbf { x } ) = p ( \mathbf { x } | \omega _ { j } ) P \left( \omega _ { j } \right)\),即先验概率与类条件概率的乘积。

贝叶斯公式的分母\(P(x)\),只是起到标量因子的作用,保证各类别的后验概率值的和为1。

  • 我们希望判别函数\(g_j(x)\)越大越好,将\(x\)归为判别函数最大的类别。

4. 最小平均风险则

  • 一共有\(c\)个类别,将\(w_i\)类的样本判别为\(w_j\)类的代价为\(\lambda_{ij}\)
  • 将未知模式\(x\)判别为\(w_j\)类的平均风险\(g_j(x)\)为:

\[g _ { j } ( \mathbf { x } ) = - \gamma _ { j } ( \mathbf { x } ) \]

\[\gamma _ { j } ( \mathbf { x } ) = \sum _ { i = 1 } ^ { c } \lambda _ { i j } P \left( \omega _ { i } | \mathbf { x } \right) \]

  • 我们希望判别函数\(g_j(x)\)越大越好,也就是相应的风险函数\(\gamma_j(x)\)越小越好。

5. 总结

  • 本博客只介绍了部分贝叶斯分类器准则,关于正态分布的贝叶斯分类器没有介绍。
  • 根据最小错误率准则,或最小平均风险准则,不难看出,贝叶斯分类器是生成式模型,不能构造一个区分不同类别的判别函数,而是考察待识别模式由不同类别所产生的概率,最后根据不同类别产生该模式的概率大小来决定他的类别属性。后续博客会介绍其他的判别式模型,关于生成式模型与判别式模型的区别可以看我以前的博客生成模型(generative model)与判别模型(discriminative model)的区别
posted @ 2018-11-07 21:15  szx_spark  阅读(981)  评论(0编辑  收藏  举报