吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)
作者:szx_spark
1. Padding
在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5。这样的好处有两点:
-
在特征图(二维卷积)中就会存在一个中心像素点。有一个中心像素点会十分方便,便于指出过滤器的位置。
-
在没有padding的情况下,经过卷积操作,输出的数据维度会减少。以二维卷积为例,输入大小 \(n\times n\),过滤器大小\(f\times f\),卷积后输出的大小为\((n-f+1)\times(n-f+1)\)。
-
为了避免这种情况发生,可以采取padding操作,padding的长度为\(p\),由于在二维情况下,上下左右都“添加”长度为\(p\)的数据。构造新的输入大小为\((n+2p)\times(n+2p)\) , 卷积后的输出变为\((n+2p-f+1)\times(n+2p-f+1)\)。
-
如果想使卷积操作不缩减数据的维度,那么\(p\)的大小应为\((f-1)/2\),其中\(f\)是过滤器的大小,该值如果为奇数,会在原始数据上对称padding,否则,就会出现向上padding 1个,向下padding 2个,向左padding 1个,向右padding 2个的情况,破坏原始数据结构。
2. Stride
卷积中的步长大小为\(s\),指过滤器在输入数据上,水平/竖直方向上每次移动的步长,在Padding 公式的基础上,最终卷积输出的维度大小为:
\(\left \lfloor \right\rfloor\)符号指向下取整,在python 中为floor地板除操作。
3. Channel
通道,通常指数据的最后一个维度(三维),在计算机视觉中,RGB代表着3个通道(channel)。
- 举例说明:现在有一张图片的大小为\(6\times 6\times 3\),过滤器的大小为\(3\times 3\times n_c\), 这里\(n_c\)指过滤器的channel大小,该数值必须与输入的channel大小相同,即\(n_c=3\)。
- 如果有\(k\)个\(3\times 3\times n_c\)的过滤器,那么卷积后的输出维度为\(4\times 4\times k\)。注意此时\(p=0, s=1\),\(k\)表示输出数据的channel大小。一般情况下,\(k\)代表\(k\)个过滤器提取的k个特征,如\(k=128\),代表128个\(3\times 3\)大小的过滤器,提取了128个特征,且卷积后的输出维度为\(4\times 4\times 128\)。
在多层卷积网络中,以计算机视觉为例,通常情况下,图像的长和宽会逐渐缩小,channel数量会逐渐增加。
4. Pooling
- 除了卷积层,卷积网络使用池化层来缩减数据的大小,提高计算的速度 ,同时提高所提取特征的鲁棒性。 池化操作不需要对参数进行学习,只是神经网络中的静态属性。
- 池化层中,数据的维度变化与卷积操作类似。池化后的channel数量与输入的channel数量相同,因为在每个channel上单独执行最大池化操作。
- f=2, s=2,相当于对数据维度的减半操作,f指池化层过滤器大小,s指池化步长。
5. 卷积神经网络(CNN)示例
课堂笔记中关于简单卷积神经网络的介绍:
一个用于手写数字识别的CNN结构如下图所示:
- 该网络应用了两层卷积,并且在第二个池化层之后又接了几个全连接层,这样做的目的是避免某一层的激活值数量减少的太快,具体原因后文解释。
与卷积神经网络的参数数量计算相关的问题:
该手写数字识别的CNN具体参数数量可视化如下所示:
- 从图中可以发现,卷积层的参数数量较小,大部分参数集中在全连接层。而且随着网络层的加深,激活值数量逐渐减少,如果激活值数量下降太快,会影响网络的性能。
- 因此需要构建多个全连接层,而不是一个全连接层一步到位。
6. 卷积层的好处
与只用全连接层相比,卷积层的主要优点是参数共享和稀疏连接,这使得卷积操作所需要学习的参数数量大大减少。