摘要: PCA(主成分分析)是一种常见的数据降维算法,其核心思想是找到一个维数更低的仿射集,然后将所有的数据点在其上做投影,以得到新的在更低维空间中的点作为新的数据。那么问题来了,如何选择这样的仿射集,以降维的同时不至于损失过多的信息呢?一般来说有两种思路: 最近重构性:样本点到该仿射集的距离要尽量小; 最 阅读全文
posted @ 2019-10-31 03:01 Freiburger 阅读(260) 评论(0) 推荐(0) 编辑