使用Spring Boot集成Kafka消息队列
使用Spring Boot集成Kafka消息队列
大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!
在现代分布式系统中,消息队列是一个非常重要的组件。Kafka作为一个高吞吐量、低延迟的分布式消息队列系统,广泛应用于各种场景。本文将介绍如何使用Spring Boot集成Kafka消息队列,包括Kafka的配置、生产者和消费者的实现。
1. 创建Spring Boot项目
首先,创建一个Spring Boot项目,选择以下依赖项:
- Spring Web
- Spring Boot DevTools
- Spring for Apache Kafka
项目创建完成后,项目结构如下:
src/
|-- main/
| |-- java/
| | `-- cn/
| | `-- juwatech/
| | `-- kafka/
| | |-- KafkaApplication.java
| | |-- config/
| | | `-- KafkaConfig.java
| | |-- producer/
| | | `-- KafkaProducer.java
| | `-- consumer/
| | `-- KafkaConsumer.java
| `-- resources/
| `-- application.properties
2. 配置Kafka
在application.properties
文件中,配置Kafka相关的属性:
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=group_id
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
3. 创建Kafka配置类
在cn.juwatech.kafka.config
包中创建KafkaConfig
类,配置Kafka生产者和消费者:
package cn.juwatech.kafka.config;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.core.*;
import java.util.HashMap;
import java.util.Map;
@EnableKafka
@Configuration
public class KafkaConfig {
@Bean
public ProducerFactory<String, String> producerFactory() {
Map<String, Object> configProps = new HashMap<>();
configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return new DefaultKafkaProducerFactory<>(configProps);
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
@Bean
public ConsumerFactory<String, String> consumerFactory() {
Map<String, Object> configProps = new HashMap<>();
configProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
configProps.put(ConsumerConfig.GROUP_ID_CONFIG, "group_id");
configProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
configProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
return new DefaultKafkaConsumerFactory<>(configProps);
}
@Bean
public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;
}
}
4. 创建Kafka生产者
在cn.juwatech.kafka.producer
包中创建KafkaProducer
类,定义生产者发送消息的方法:
package cn.juwatech.kafka.producer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
@Service
public class KafkaProducer {
private static final String TOPIC = "test_topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
public void sendMessage(String message) {
kafkaTemplate.send(TOPIC, message);
}
}
5. 创建Kafka消费者
在cn.juwatech.kafka.consumer
包中创建KafkaConsumer
类,定义消费者接收消息的方法:
package cn.juwatech.kafka.consumer;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;
@Service
public class KafkaConsumer {
@KafkaListener(topics = "test_topic", groupId = "group_id")
public void consume(String message) {
System.out.println("Consumed message: " + message);
}
}
6. 创建测试类
在cn.juwatech.kafka
包中创建KafkaApplication
类,编写测试方法:
package cn.juwatech.kafka;
import cn.juwatech.kafka.producer.KafkaProducer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplication implements CommandLineRunner {
@Autowired
private KafkaProducer kafkaProducer;
public static void main(String[] args) {
SpringApplication.run(KafkaApplication.class, args);
}
@Override
public void run(String... args) throws Exception {
kafkaProducer.sendMessage("Hello, Kafka!");
}
}
启动Spring Boot应用程序,观察控制台输出,可以看到生产者发送的消息被消费者接收到。
7. 高级配置
除了基本配置,Kafka还支持更多高级配置。例如,可以配置多个消费者组、多个主题(topic),以及更多的消费者和生产者属性。
多主题和多消费者组配置
修改application.properties
文件,添加多个主题和消费者组:
spring.kafka.consumer.group-id=group_id_1,group_id_2
spring.kafka.consumer.topics=topic_1,topic_2
在KafkaConsumer
类中,定义多个@KafkaListener
,分别监听不同的主题和消费者组:
package cn.juwatech.kafka.consumer;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;
@Service
public class KafkaConsumer {
@KafkaListener(topics = "topic_1", groupId = "group_id_1")
public void consumeTopic1(String message) {
System.out.println("Consumed message from topic_1: " + message);
}
@KafkaListener(topics = "topic_2", groupId = "group_id_2")
public void consumeTopic2(String message) {
System.out.println("Consumed message from topic_2: " + message);
}
}
高级生产者配置
在KafkaConfig
类中,可以为生产者配置更多属性,例如重试次数、批量发送大小等:
@Bean
public ProducerFactory<String, String> producerFactory() {
Map<String, Object> configProps = new HashMap<>();
configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
configProps.put(ProducerConfig.RETRIES_CONFIG, 3);
configProps.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
configProps.put(ProducerConfig.LINGER_MS_CONFIG, 1);
return new DefaultKafkaProducerFactory<>(configProps);
}
8. 完整代码示例
以下是一个完整的示例,展示了如何使用Spring Boot集成Kafka消息队列,并进行基本配置和高级配置:
application.properties
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=group_id
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
KafkaConfig.java
package cn.juwatech.kafka.config;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.core.*;
import java.util.HashMap;
import java.util.Map;
@EnableKafka
@Configuration
public class KafkaConfig {
@Bean
public ProducerFactory<String, String> producerFactory() {
Map<String, Object> configProps = new HashMap<>();
configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return new DefaultKafkaProducerFactory<>(configProps);
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
@Bean
public
ConsumerFactory<String, String> consumerFactory() {
Map<String, Object> configProps = new HashMap<>();
configProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
configProps.put(ConsumerConfig.GROUP_ID_CONFIG, "group_id");
configProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
configProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
return new DefaultKafkaConsumerFactory<>(configProps);
}
@Bean
public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;
}
}
KafkaProducer.java
package cn.juwatech.kafka.producer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
@Service
public class KafkaProducer {
private static final String TOPIC = "test_topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
public void sendMessage(String message) {
kafkaTemplate.send(TOPIC, message);
}
}
KafkaConsumer.java
package cn.juwatech.kafka.consumer;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;
@Service
public class KafkaConsumer {
@KafkaListener(topics = "test_topic", groupId = "group_id")
public void consume(String message) {
System.out.println("Consumed message: " + message);
}
}
KafkaApplication.java
package cn.juwatech.kafka;
import cn.juwatech.kafka.producer.KafkaProducer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplication implements CommandLineRunner {
@Autowired
private KafkaProducer kafkaProducer;
public static void main(String[] args) {
SpringApplication.run(KafkaApplication.class, args);
}
@Override
public void run(String... args) throws Exception {
kafkaProducer.sendMessage("Hello, Kafka!");
}
}
通过以上示例,详细介绍了如何使用Spring Boot集成Kafka消息队列,包括Kafka的配置、生产者和消费者的实现,以及高级配置的使用。理解和掌握这些内容,有助于开发高效、可靠的分布式系统。
著作权归聚娃科技微赚淘客系统开发者团队,转载请注明出处!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现