zoj 3362 Beer Problem 最小费用流
别人都说是赤裸裸的最小费用流,自己想了很久,都想不到如何做,最后看了别人解题报告才懂。
关键还是在构图和转化。源点是1,添加一个汇点,汇点到各个城市的边的容量是各个城市卖啤酒的钱的相反数。通过spfa求cost的最短路径,若最短路径的cost小于0,说明这条路径是赚钱的,否则是亏本的,算法停止。
#include<iostream> #include <queue> #include <cstdio> #include <cstring> using namespace std; const int N = 105; const int M = 2005; const int INF = 1000000000; struct edge { int v; int cap; int cost; int next; }; edge E[M*4+N*2]; int head[N]; int cost[N]; int pre_v[N], pre_e[N]; bool inQ[N]; int n, m; int cnt; void add_edge(int u, int v, int cap, int cost) { E[cnt].v = v; E[cnt].cap = cap; E[cnt].cost = cost; E[cnt].next = head[u]; head[u] = cnt++; E[cnt].v = u; E[cnt].cap = 0; E[cnt].cost = -cost; E[cnt].next = head[v]; head[v] = cnt++; } int mcmf(int s, int t, int n) { queue<int> Q; int u; int mincost = 0; while (1) { memset(inQ, false, sizeof(inQ)); //memset(pre_e, -1, sizeof(pre_e)); memset(pre_v, -1, sizeof(pre_v)); Q.push(s); for (int i = 0; i < n; i++) cost[i] = INF; cost[s] = 0; inQ[s] = true; //spfa //根据每条边的cost求最短路 while (!Q.empty()) { u = Q.front(); Q.pop(); inQ[u] = false; for (int i = head[u]; i != -1; i = E[i].next) { int v = E[i].v; if (E[i].cap && cost[u] + E[i].cost < cost[v]) { cost[v] = cost[u] + E[i].cost; if (!inQ[v]) { Q.push(v); inQ[v] = true; } pre_v[v] = u; pre_e[v] = i; } } } //当cost[t]大于0时,说明当前的买卖时亏本的,退出 if (cost[t] >= 0) break; int f = INF; for (int i = t; i != s; i = pre_v[i]) { int v = pre_e[i]; f = min(f, E[v].cap); } mincost += f*cost[t]; for (int i = t; i != s; i = pre_v[i]) { int u = pre_e[i]; E[u].cap -= f; E[u^1].cap += f; } } return -mincost; } int main() { int u, v, cap, w; while (cin >> n >> m) { if (!n && !m) break; cnt = 0; memset(head, -1, sizeof(head)); for (int i = 2; i <= n; i++) { scanf("%d", &w); add_edge(i, n+1, INF, -w); } for (int i = 0; i < m; i++) { scanf("%d%d%d%d", &u, &v, &cap, &w); add_edge(u, v, cap, w); add_edge(v, u, cap, w); } cout << mcmf(1, n+1, n+2) << endl; } return 0; }