剑指 Offer II 013. 二维子矩阵的和
给定一个二维矩阵 matrix,以下类型的多个请求:
计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2) 。
实现 NumMatrix 类:
NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
int sumRegion(int row1, int col1, int row2, int col2) 返回左上角 (row1, col1) 、右下角 (row2, col2) 的子矩阵的元素总和。
示例 1:
输入:
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
最多调用 104 次 sumRegion 方法
来源:力扣(LeetCode)
题解:
二维前缀和,为避免-1对是否为0,判断,存前缀和从(1,1)开始
res.resize(n + 1, vector<int>(m + 1));//定义二维动态数组的大小
class NumMatrix { public: vector<vector<int>> res; NumMatrix(vector<vector<int>>& matrix) { int n=matrix.size(),m=matrix[0].size(); if(n!=0) { res.resize(n + 1, vector<int>(m + 1));//定义二维动态数组的大小 for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { res[i+1][j+1]=res[i][j+1]+res[i+1][j]-res[i][j]+matrix[i][j]; } } } } int sumRegion(int row1, int col1, int row2, int col2) { return res[row2+1][col2+1]-res[row2+1][col1]-res[row1][col2+1]+res[row1][col1]; } }; /** * Your NumMatrix object will be instantiated and called as such: * NumMatrix* obj = new NumMatrix(matrix); * int param_1 = obj->sumRegion(row1,col1,row2,col2); */