Loading [MathJax]/jax/output/CommonHTML/jax.js

深度学习-目标检测中的mAP计算

谨以本文记录深度学习入门过程中学习的目标检测常见指标,如有错误还请朋友不吝指教!

目标检测评价指标——mAP

如上图所示,绿颜色的为GT Box,红颜色的Predict Box。如果要正确检测出图中的猫和狗,那怎么才能算是正确的检测呢?下边的这三个标准是都需要看的:
  1. GT与预测框的IoU是否大于阈值?
  2. 预测的类别是否正确?
  3. 置信度是否大于阈值?

交并比(IoU,Intersection over Union)

IoU的作用是评价两个矩形框之间的相似性,在目标检测中是度量两个检测框的交叠程度。计算公式如下:

IOU=area(BgtBp)area(BgtBp)

其中Bgt表示GT Box,Bp表示Predict Box。

查准率和查全率

什么是TP、TN、FP、FN?

  • TP:True Positive
  • TN:True Negative
  • FP:False Positive
  • FN:False Negative

TP、TN、FP和FN的对应解释如上所述,其中的Positive和Negative表示模型对样本预测的结果是正样本还是负样本True和False表示预测的结果和真实结果是否相同。例如:True Positive就是模型预测样本为正样本,该结果与实际结果相同,该样本实际上本来就是标签为正的样本。

如果假设IoU阈值为0.5的话,那在目标检测中:

  • TP:表示IoU>0.5的检测框的数量,也就是检测正确的数量。
  • FP:表示IoU0.5的检测框数量(或者是检测到同一GT的多余的检测框的数量),属于误检一类了。
  • FN:表示没有检测到的GT数量,即漏检的数量。

查准率(Precision)

被预测为正样本的检测框中预测正确的占比:

Precision=TPTP+FP=TPall detections

如上图所示,图中GT共有5只猫待检测,但实际上只检测出来了一只,而且这个检测是正确的。那这种情况下的查全率就是:

Precision=11=100%

查全率(Recall)

被正确检测出来的真实框占所有真实框的比例:

Recall=TPTP+FN=TPall ground truths

同样是上边有5个待检测的GT,这次得到了50个预测框,其中5个全部预测正确,这种情况下TP=5,漏检FN=0最终的查全率为:

Recall=55+0=100%

AP和mAP

AP 是计算某一类 P-R 曲线下的面积,mAP 则是计算所有类别 P-R 曲线下面积的平均值。其中P是查准率Precision,R是查全率Recall。

下面以3张图片为例,说明AP和mAP的计算过程:

在所有的图片中(当前只有上图一张),待检测的目标的数量numob=2,上图中的检测情况如下表所示:

GT id Confidence OB(IoU=0.5)
1 0.98 True
1 0.61 False

该表中的顺序是按Confidence从高到低排序的,对于一个GT来说,只能有一个检测框为正确的检测。

加入第二张图片,此时待检测的目标数量numob=3,检测情况如下表所示

GT id Confidence OB(IoU=0.5)
1 0.98 True
3 0.89 True
3 0.66 False
1 0.61 False

加入第三张图片,加上前两张中的待检测目标,共有 numob=7 个目标需要检测,检测情况如下表所示:

GT id Confidence OB(IoU=0.5)
1 0.98 True
3 0.89 True
6 0.88 True
7 0.78 True
3 0.66 False
1 0.61 False
4 0.52 True

依次取Confidence的阈值为[0.98, 0.89, 0.88, 0.78, 0.66, 0.61, 0.52],计算对应的查准率和查全率如下表所示:

Rank Precision Recall Confidence thread
1 1.0 0.14 0.98
2 1.0 0.28 0.89
3 1.0 0.42 0.88
4 1.0 0.57 0.78
5 0.80 0.57 0.66
6 0.66 0.57 0.61
7 0.71 0.71 0.52

以Confidence thread=0.52为例:
此时的TP=5,误检FP=2,第一张和第三张两张图片共漏检FN=2,所以

Precision=TPTP+FP=55+2=0.71

Recall=TPTP+FN=55+2=0.71

绘制出对应的P-R曲线图:

计算曲线下方的面积,也就是猫这一类别的AP:

(0.140)×1.0+(0.280.14)×1.0+(0.420.28)×1.0+(0.570.42)×1.0+(0.710.57)×0.71=0.6694

对于表格中Recall相同的,只保留Precision最高的值进行计算,最终得到猫这一类的AP=0.6694,如果要计算mAP则需要计算出其他类别的AP,并取平均值。


参考链接:
https://www.zhihu.com/question/53405779/answer/399478988
如果想看视频讲解的朋友可以移步这位up主的投稿,文中的例子也是来源于该视频:https://www.bilibili.com/video/BV1ez4y1X7g2/?spm_id_from=333.788.recommend_more_video.4

posted @   sykline  阅读(1563)  评论(0编辑  收藏  举报
编辑推荐:
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示