分布式缓存
1.Redis持久化
Redis有两种持久化方案:
- RDB持久化
- AOF持久化
1.1.RDB持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
1.1.1.执行时机
RDB持久化在四种情况下会执行:
- 执行save命令
- 执行bgsave命令
- Redis停机时
- 触发RDB条件时
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1
save 300 10
save 60 10000
RDB的其它配置也可以在redis.conf文件中设置:
# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes
# RDB文件名称
dbfilename dump.rdb
# 文件保存的路径目录
dir ./
1.1.2.小结
RDB方式bgsave的基本流程?
- fork主进程得到一个子进程,共享内存空间
- 子进程读取内存数据并写入新的RDB文件
- 用新RDB文件替换旧的RDB文件
RDB会在什么时候执行?save 60 1000代表什么含义?
- 默认是服务停止时
- 代表60秒内至少执行1000次修改则触发RDB
RDB的缺点?
- RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
- fork子进程、压缩、写出RDB文件都比较耗时
1.2.AOF持久化
1.2.1.AOF原理
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
1.2.2.AOF配置
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
1.2.3.AOF文件重写
去除历史记录,保留最新操作
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
1.3.RDB与AOF对比
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
2.Redis主从
2.1.搭建主从架构
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
完成主从绑定
slaveof <masterip> <masterport>
具体搭建步骤请参考详细资料
2.2.主从数据同步原理
2.2.1.全量同步
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点:
这里有一个问题,master如何得知salve是第一次来连接呢??
-
Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
-
offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
master判断一个节点是否是第一次同步的依据,就是看replid是否一致
完整流程描述:
- slave节点请求增量同步
- master节点判断replid,发现不一致,拒绝增量同步
- master将完整内存数据生成RDB,发送RDB到slave
- slave清空本地数据,加载master的RDB
- master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
- slave执行接收到的命令,保持与master之间的同步
2.2.2.增量同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步
,可以理解为从redis的一次更新
操作。
2.2.3.repl_backlog原理
master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
uploading-image-508387.png
uploading-image-520054.png
2.3.主从同步优化
可以从以下几个方面来优化Redis主从就集群:
- 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
- Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
- 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
- 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
2.4.小结
简述全量同步和增量同步区别?
- 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
- 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
- slave节点第一次连接master节点时
- slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
- slave节点断开又恢复,并且在repl_baklog中能找到offset时
3.Redis哨兵
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
3.1.哨兵原理
3.1.1.集群结构和作用
哨兵的结构如图:
哨兵的作用如下:
- 监控:Sentinel 会不断检查您的master和slave是否按预期工作
- 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
- 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
3.1.2.集群监控原理
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
3.1.3.小结
Sentinel的三个作用是什么?
- 监控
- 故障转移
- 通知
Sentinel如何判断一个redis实例是否健康?
- 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
- 如果大多数sentinel都认为实例主观下线,则判定服务下线
故障转移步骤有哪些?
- 首先选定一个slave作为新的master,执行slaveof no one
- 然后让所有节点都执行slaveof 新master
- 修改故障节点配置,添加slaveof 新master
3.2.搭建哨兵集群(搭建步骤参考文章...)
3.3.RedisTemplate
在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
Idea实现集群搭建
3.3.1.引入依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
3.3.2.配置Redis地址
spring:
redis:
sentinel:
master: mymaster
nodes:
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
3.3.3.配置读写分离
在项目的启动类中,添加一个新的bean:
@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}
这个bean中配置的就是读写策略,包括四种:
- MASTER:从主节点读取
- MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
- REPLICA:从slave(replica)节点读取
- REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master
4.Redis分片集群
4.1.搭建分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
- 海量数据存储问题
- 高并发写的问题
分片集群特征:
- 集群中有多个master,每个master保存不同数据
- 每个master都可以有多个slave节点
- master之间通过ping监测彼此健康状态
- 客户端请求可以访问集群任意节点,最终都会被转发到正确节点
搭建步骤参考...
4.2.散列插槽
4.2.1.插槽原理
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到
4.2.1.小结
Redis如何判断某个key应该在哪个实例?
- 将16384个插槽分配到不同的实例
- 根据key的有效部分计算哈希值,对16384取余
- 余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
- 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀
4.3.集群伸缩
1).可以在集群中添加新节点
2).可以转移插槽到另一个集群
4.4.故障转移
4.4.1.自动故障转移
集群默认自动故障转移,如果主节点宕机,自动提升一个slave为新的master,主节点再次启动之后变为从节点.
4.4.2.手动故障转移
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。
这种failover命令可以指定三种模式:
- 缺省:默认的流程,如图1~6歩
- force:省略了对offset的一致性校验
- takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见