RocketMQ(八)RocketMQ的Consumer负载均衡
一、问题描述
RocketMQ的Consumer是如何做的负载均衡?比如:5个Consumer进程同时消费一个Topic,这个Topic只有4个queue会出现啥情况?反之Consumer数量小于queue的数据是啥情况?
二、源码剖析
1、RebalancePushImpl
public class RebalancePushImpl extends RebalanceImpl { public RebalancePushImpl(String consumerGroup, MessageModel messageModel, AllocateMessageQueueStrategy allocateMessageQueueStrategy, MQClientInstance mQClientFactory, DefaultMQPushConsumerImpl defaultMQPushConsumerImpl) { // 可以看到很简单,调用了父类RebalanceImpl的构造器 super(consumerGroup, messageModel, allocateMessageQueueStrategy, mQClientFactory); this.defaultMQPushConsumerImpl = defaultMQPushConsumerImpl; }
2、RebalanceImpl
public abstract class RebalanceImpl { // 很简单,就是初始化一些东西,关键在于下面的doRebalance public RebalanceImpl(String consumerGroup, MessageModel messageModel, AllocateMessageQueueStrategy allocateMessageQueueStrategy, MQClientInstance mQClientFactory) { this.consumerGroup = consumerGroup; this.messageModel = messageModel; this.allocateMessageQueueStrategy = allocateMessageQueueStrategy; this.mQClientFactory = mQClientFactory; } /** * 分配消息队列,命名抄袭spring,doXXX开始真正的业务逻辑 * * @param isOrder:是否是顺序消息 true:是;false:不是 */ public void doRebalance(final boolean isOrder) { // 分配每个topic的消息队列 Map<String, SubscriptionData> subTable = this.getSubscriptionInner(); if (subTable != null) { for (final Map.Entry<String, SubscriptionData> entry : subTable.entrySet()) { final String topic = entry.getKey(); try { // 这个是关键了 this.rebalanceByTopic(topic, isOrder); } catch (Throwable e) { if (!topic.startsWith(MixAll.RETRY_GROUP_TOPIC_PREFIX)) { log.warn("rebalanceByTopic Exception", e); } } } } // 移除未订阅的topic对应的消息队列 this.truncateMessageQueueNotMyTopic(); } }
2.1、rebalanceByTopic
private void rebalanceByTopic(final String topic, final boolean isOrder) { switch (messageModel) { case CLUSTERING: { // 获取topic对应的队列和consumer信息,比如mqSet如下 /** * 0 = {MessageQueue@2151} "MessageQueue [topic=myTopic001, brokerName=broker-a, queueId=3]" * 1 = {MessageQueue@2152} "MessageQueue [topic=myTopic001, brokerName=broker-a, queueId=0]" * 2 = {MessageQueue@2153} "MessageQueue [topic=myTopic001, brokerName=broker-a, queueId=2]" * 3 = {MessageQueue@2154} "MessageQueue [topic=myTopic001, brokerName=broker-a, queueId=1]" */ Set<MessageQueue> mqSet = this.topicSubscribeInfoTable.get(topic); // 所有的Consumer客户端cid,比如:172.16.20.246@7832 List<String> cidAll = this.mQClientFactory.findConsumerIdList(topic, consumerGroup); if (mqSet != null && cidAll != null) { List<MessageQueue> mqAll = new ArrayList<MessageQueue>(); // 为什么要addAll到list里,因为他要排序 mqAll.addAll(mqSet); // 排序消息队列和消费者数组,因为是在进行分配队列,排序后,各Client的顺序才能保持一致。 Collections.sort(mqAll); Collections.sort(cidAll); // 默认选择的是org.apache.rocketmq.client.consumer.rebalance.AllocateMessageQueueAveragely AllocateMessageQueueStrategy strategy = this.allocateMessageQueueStrategy; // 根据队列分配策略分配消息队列 List<MessageQueue> allocateResult = null; try { // 这个才是要介绍的真正C位,strategy.allocate() allocateResult = strategy.allocate( this.consumerGroup, this.mQClientFactory.getClientId(), mqAll, cidAll); } catch (Throwable e) { return; } } } } }
3、AllocateMessageQueueAveragely
3.1、allocate
public class AllocateMessageQueueAveragely implements AllocateMessageQueueStrategy { private final InternalLogger log = ClientLogger.getLog(); @Override public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll, List<String> cidAll) { /** * 参数校验的代码我删了。 */ List<MessageQueue> result = new ArrayList<MessageQueue>(); /** * 第几个Consumer,这也是我们上面为什么要排序的重要原因之一。 * Collections.sort(mqAll); * Collections.sort(cidAll); */ int index = cidAll.indexOf(currentCID); // 取模,多少消息队列无法平均分配 比如mqAll.size()是4,代表4个queue。cidAll.size()是5,代表一个consumer,那么mod就是4 int mod = mqAll.size() % cidAll.size(); // 平均分配 // 4 <= 5 ? 1 : (4 > 0 && 1 < 4 ? 4 / 5 + 1 : 4 / 5) int averageSize = mqAll.size() <= cidAll.size() ? 1 : (mod > 0 && index < mod ? mqAll.size() / cidAll.size() + 1 : mqAll.size() / cidAll.size()); // 有余数的情况下,[0, mod) 平分余数,即每consumer多分配一个节点;第index开始,跳过前mod余数。 int startIndex = (mod > 0 && index < mod) ? index * averageSize : index * averageSize + mod; // 分配队列数量。之所以要Math.min()的原因是,mqAll.size() <= cidAll.size(),部分consumer分配不到消息队列。 int range = Math.min(averageSize, mqAll.size() - startIndex); for (int i = 0; i < range; i++) { result.add(mqAll.get((startIndex + i) % mqAll.size())); } return result; } }
3.2、解释
看着这算法凌乱的很,太复杂了!说实话,确实挺复杂,蛮罗嗦的,但是代数法可以得到如下表格:
假设4个queue | Consumer有2个 可以整除 | Consumer有3个 不可整除 | Consumer有5个 无法都分配 |
---|---|---|---|
queue[0] | Consumer[0] | Consumer[0] | Consumer[0] |
queue[1] | Consumer[0] | Consumer[0] | Consumer[1] |
queue[2] | Consumer[1] | Consumer[1] | Consumer[2] |
queue[3] | Consumer[1] | Consumer[2] | Consumer[3] |
所以得出如下真香定律(也是回击面试官的最佳答案):
- queue个数大于Consumer个数,且queue个数能整除Consumer个数的话, 那么Consumer会平均分配queue。(比如上面表格的Consumer有2个 可以整除部分)
- queue个数大于Consumer个数,且queue个数不能整除Consumer个数的话, 那么会有一个Consumer多消费1个queue,其余Consumer平均分配。(比如上面表格的Consumer有3个 不可整除部分)
- queue个数小于Consumer个数,那么会有Consumer闲置,就是浪费掉了,其余Consumer平均分配到queue上。(比如上面表格的Consumer有5个 无法都分配部分)
4、补充
queue选择算法也就是负载均衡算法有很多种可选择:
AllocateMessageQueueAveragely
:是前面讲的默认方式AllocateMessageQueueAveragelyByCircle
:每个消费者依次消费一个partition,环状。AllocateMessageQueueConsistentHash
:一致性hash算法AllocateMachineRoomNearby
:就近元则,离的近的消费AllocateMessageQueueByConfig
:是通过配置的方式
三、何时Rebalance
那就得从Consumer启动的源码开始看起,先看Consumer的启动方法start()
public class DefaultMQPushConsumerImpl implements MQConsumerInner { private MQClientInstance mQClientFactory; // 启动Consumer的入口函数 public synchronized void start() throws MQClientException { this.mQClientFactory = MQClientManager.getInstance().getOrCreateMQClientInstance( this.defaultMQPushConsumer, this.rpcHook); // 调用MQClientInstance的start方法,追进去看看。 mQClientFactory.start(); } }
看看mQClientFactory.start();
都干了什么
public class MQClientInstance { private final RebalanceService rebalanceService; public void start() throws MQClientException { synchronized (this) { // 调用RebalanceService的start方法,别慌,继续追进去看看 this.rebalanceService.start(); } } }
看看rebalanceService.start();
都干了什么,先看下他的父类ServiceThread
/* * 首先可以发现他是个线程的任务,实现了Runnable接口 * 其次发现上步调用的start方法居然就是thread.start(),那就相当于调用了RebalanceService的run方法 */ public abstract class ServiceThread implements Runnable { public void start() { this.thread = new Thread(this, getServiceName()); this.thread.setDaemon(isDaemon); this.thread.start(); }
最后来看看RebalanceService.run()
public class RebalanceService extends ServiceThread { /** * 等待时间的间隔,毫秒,默认是20s */ private static long waitInterval = Long.parseLong(System.getProperty( "rocketmq.client.rebalance.waitInterval", "20000")); @Override public void run() { while (!this.isStopped()) { // 等待20s,然后超时自动释放锁执行doRebalance this.waitForRunning(waitInterval); this.mqClientFactory.doRebalance(); } } }
到这里真相大白了。
当一个consumer出现宕机后,默认最多20s,其它机器将重新消费已宕机的机器消费的queue,同样当有新的Consumer连接上后,20s内也会完成rebalance使得新的Consumer有机会消费queue里的msg。
等等,好像有问题:新上线一个Consumer要等20s才能负载均衡?这不是搞笑呢吗?肯定有猫腻。
确实,新启动Consumer的话会立即唤醒沉睡的线程, 让他立马进行this.mqClientFactory.doRebalance();
,源码如下
public class DefaultMQPushConsumerImpl implements MQConsumerInner { // 启动Consumer的入口函数 public synchronized void start() throws MQClientException { // 看到了没!!!, 见名知意,立即rebalance负载均衡 this.mQClientFactory.rebalanceImmediately(); } }