web项目规划和总结
系统吞度量要素
一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。
单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间
QPS(TPS):每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
QPS(TPS)= 并发数/平均响应时间
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降
二.系统吞吐量评估:
我们在做系统设计的时候就需要考虑CPU运算、IO、外部系统响应因素造成的影响以及对系统性能的初步预估。
而通常境况下,我们面对需求,我们评估出来的出来QPS、并发数之外,还有另外一个维度:日PV。
通过观察系统的访问日志发现,在用户量很大的情况下,各个时间周期内的同一时间段的访问流量几乎一样。比如工作日的每天早上。只要能拿到日流量图和QPS我们就可以推算日流量。
通常的技术方法:
1. 找出系统的最高TPS和日PV,这两个要素有相对比较稳定的关系(除了放假、季节性因素影响之外)
2. 通过压力测试或者经验预估,得出最高TPS,然后跟进1的关系,计算出系统最高的日吞吐量。B2B中文和淘宝面对的客户群不一样,这两个客户群的网络行为不应用,他们之间的TPS和PV关系比例也不一样
不同的角度看问题
用户需要关注
相应时间较小时,用户体验是很好的,当然用户体验的响应时间包括个人主观因素和客观响应时间,在设计软件时,我们就需要考虑到如何更好地结合这两部分达到用户最佳的体验。如:用户在大数据量查询时,我们可以将先提取出来的数据展示给用户,在用户看的过程中继续进行数据检索
管理员的角度考
1、 相应时间
2、 服务器资源使用情况是否合理
3、 应用服务器和数据库资源使用是否合理
4、 系统能否实现扩展
5、 系统最多支持多少用户访问、系统最大业务处理量是多少
6、 系统性能可能存在的瓶颈在哪里
7、 更换那些设备可以提高性能
8、 系统能否支持7×24小时的业务访问
开发(设计)人员
1、 架构设计是否合理
2、 数据库设计是否合理
3、 代码是否存在性能方面的问题
4、 系统中是否有不合理的内存使用方式
5、 系统中是否存在不合理的线程同步方式
6、 系统中是否存在不合理的资源竞争
二、软件性能
1、响应时间:对请求作出响应所需要的时间
网络传输时间:N1+N2+N3+N4
应用服务器处理时间:A1+A3
数据库服务器处理时间:A2
响应时间=N1+N2+N3+N4+A1+A3+A2
2、并发用户数的计算公式
同时在线用户数:在一定的时间范围内,最大的同时在线用户数量。
同时在线用户数=每秒请求数RPS(吞吐量)+并发连接数+平均用户思考时间
平均并发用户数的计算:C=nL / T
其中C是平均的并发用户数,n是平均每天访问用户数(login session),L是一天内用户从登录到退出的平均时间(login session的平均时间),T是考察时间长度(一天内多长时间有用户使用系统)
3、吞吐量的计算公式
指单位时间内系统处理用户的请求数
从业务角度看,吞吐量可以用:请求数/秒、页面数/秒、人数/天或处理业务数/小时等单位来衡量
从网络角度看,吞吐量可以用:字节/秒来衡量