二维计算几何基础题目泛做(SYX第一轮)

题目1: POJ 2318 TOYS

题目大意:

给一个有n个挡板的盒子,从左到右空格编号为0...n。有好多玩具,问每个玩具在哪个空格里面。

算法讨论:

直接叉积判断就可以。注意在盒子的边界上面也算在盒子里面。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <iostream>
 5 #include <algorithm>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const int M = 5000 + 5;
11 typedef long long ll;
12 
13 int n, m, a, b, c, d;
14 int vi[M], tim = 0, num[M];
15 
16 struct Line {
17   int zx, zy, yx, yy;
18 }l[M];
19 
20 struct Point {
21   int x, y;
22   bool operator < (const Point &h) const {
23     if(h.x == x) return y < h.y;
24     return x < h.x;
25   }
26 }p[M];
27 
28 ll cross(int i, int j) {
29   return 1LL * (l[i].zx - p[j].x) * (l[i].yy - p[j].y) - 1LL * (l[i].yx - p[j].x) * (l[i].zy - p[j].y);
30 }
31 #define ONLINE_JUDGE
32 
33 int main() {
34 #ifndef ONLINE_JUDGE
35   freopen("t.txt", "r", stdin);
36   freopen("t.out", "w", stdout);
37 #endif
38   
39   int u, v;
40   
41   while(scanf("%d", &n) && n) {
42     scanf("%d%d%d%d%d", &m, &a, &b, &c, &d);
43     ++ tim;
44     memset(num, 0, sizeof num);
45     for(int i = 1; i <= n; ++ i) {
46       scanf("%d%d", &u, &v);
47       l[i].zx = u; l[i].zy = b;
48       l[i].yx = v; l[i].yy = d;
49     }
50     l[0].zx = l[0].yx = a;
51     l[0].zy = b; l[0].yy = d;
52     l[n + 1].zx = l[n + 1].yx = c;
53     l[n + 1].zy = b; l[n + 1].yy = d;
54     for(int i = 1; i <= m; ++ i) {
55       scanf("%d%d", &p[i].x, &p[i].y);
56     }
57     for(int i = 0; i < n + 1; ++ i) {
58       for(int j = 1; j <= m; ++ j) {
59         if(vi[j] == tim) continue;
60         if(p[j].y == b) {
61           if(p[j].x >= l[i].zx && p[j].x <= l[i + 1].zx) {
62             vi[j] = tim;
63             num[i] ++;
64           }
65         }
66         else if(p[j].y == d) {
67           if(p[j].x >= l[i].yx && p[j].x <= l[i + 1].yx) {
68             vi[j] = tim;
69             num[i] ++;
70           }
71         }
72         else if(i == 0 && p[j].x == a) {
73           vi[j] = tim;
74           num[0] ++;
75         }
76         else if(i == n && p[j].x == c) {
77           vi[j] = tim;
78           num[n] ++;
79         }
80         else if(1LL * cross(i, j) * cross(i + 1, j) < 0) {
81           vi[j] = tim;
82           num[i] ++;
83         }
84       }
85     }
86     for(int i = 0; i < n + 1; ++ i) {
87       printf("%d: %d\n", i, num[i]);
88     }
89     puts("");
90   }
91 
92 #ifndef ONLINE_JUDGE
93   fclose(stdin); fclose(stdout);
94 #endif
95   return 0;
96 }
poj 2318

 

题目2: POJ 2398 Toys

题目大意:

同上。不过不同的是,这里面的挡板输入是没有顺序的,而且问的是有t个玩具的格子有几个。

算法讨论:

上个题小小变动一下就可以了。

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <cstdlib>
  4 #include <iostream>
  5 #include <algorithm>
  6 #include <cmath>
  7 
  8 using namespace std;
  9 
 10 const int M = 5000 + 5;
 11 typedef long long ll;
 12 
 13 int n, m, a, b, c, d;
 14 int vi[M], tim = 0, num[M], out[M];
 15 
 16 struct Line {
 17   int zx, zy, yx, yy;
 18   bool operator < (const Line &h) const {
 19     int lx1 = max(zx, yx), mx1 = min(zx, yx);
 20     int lx2 = max(h.zx, h.yx), mx2 = min(h.zx, h.yx);
 21 
 22     if(mx2 == mx1) {
 23       return lx1 < lx2;
 24     }
 25     return mx1 < mx2;
 26   }
 27 }l[M];
 28 
 29 struct Point {
 30   int x, y;
 31   bool operator < (const Point &h) const {
 32     if(h.x == x) return y < h.y;
 33     return x < h.x;
 34   }
 35 }p[M];
 36 
 37 ll cross(int i, int j) {
 38   return 1LL * (l[i].zx - p[j].x) * (l[i].yy - p[j].y) - 1LL * (l[i].yx - p[j].x) * (l[i].zy - p[j].y);
 39 }
 40 #define ONLINE_JUDGE
 41 
 42 int main() {
 43 #ifndef ONLINE_JUDGE
 44   freopen("t.txt", "r", stdin);
 45   freopen("t.out", "w", stdout);
 46 #endif
 47   
 48   int u, v;
 49   
 50   while(scanf("%d", &n) && n) {
 51     scanf("%d%d%d%d%d", &m, &a, &b, &c, &d);
 52     ++ tim;
 53     memset(num, 0, sizeof num);
 54     memset(out, 0, sizeof out);
 55     for(int i = 1; i <= n; ++ i) {
 56       scanf("%d%d", &u, &v);
 57       l[i].zx = u; l[i].zy = b;
 58       l[i].yx = v; l[i].yy = d;
 59     }
 60     sort(l + 1, l + n + 1);
 61     l[0].zx = l[0].yx = a;
 62     l[0].zy = b; l[0].yy = d;
 63     l[n + 1].zx = l[n + 1].yx = c;
 64     l[n + 1].zy = b; l[n + 1].yy = d;
 65     for(int i = 1; i <= m; ++ i) {
 66       scanf("%d%d", &p[i].x, &p[i].y);
 67     }
 68     for(int i = 0; i < n + 1; ++ i) {
 69       for(int j = 1; j <= m; ++ j) {
 70         if(vi[j] == tim) continue;
 71         if(p[j].y == b) {
 72           if(p[j].x >= l[i].zx && p[j].x <= l[i + 1].zx) {
 73             vi[j] = tim;
 74             num[i] ++;
 75           }
 76         }
 77         else if(p[j].y == d) {
 78           if(p[j].x >= l[i].yx && p[j].x <= l[i + 1].yx) {
 79             vi[j] = tim;
 80             num[i] ++;
 81           }
 82         }
 83         else if(i == 0 && p[j].x == a) {
 84           vi[j] = tim;
 85           num[0] ++;
 86         }
 87         else if(i == n && p[j].x == c) {
 88           vi[j] = tim;
 89           num[n] ++;
 90         }
 91         else if(1LL * cross(i, j) * cross(i + 1, j) < 0) {
 92           vi[j] = tim;
 93           num[i] ++;
 94         }
 95       }
 96     }
 97     for(int i = 0; i < n + 1; ++ i) {
 98       out[num[i]] ++;
 99     }
100     puts("Box");
101     for(int i = 1; i <= m; ++ i) {
102       if(out[i])
103         printf("%d: %d\n", i, out[i]);
104     }
105   }
106 
107 #ifndef ONLINE_JUDGE
108   fclose(stdin); fclose(stdout);
109 #endif
110   return 0;
111 }
poj 2398

 

题目3: POJ 1654 Area

题目大意:

给一个数字序列,每个数字都代表向特定的方向走。求数字围成的多边形的面积。数据保证合法。

算法讨论:

直接做就行。注意输出的时候,分类讨论下就可以了。而且注意内存,不能把点存下来,要边读入边计算。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <algorithm>
 5 #include <iostream>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const int N = 1000000 + 5;
11 
12 int len, cnt;
13 char str[N];
14 int dx[]={0, 1, 1, 1, 0, 0, 0, -1, -1, -1};
15 int dy[]={0, -1, 0, 1, -1, 0, 1, -1, 0, 1};
16 
17 double cross(double a, double b, double c, double d) {
18   return a * d - b * c;
19 }
20 
21 int main() {
22   int t;
23 
24   scanf("%d", &t);
25 
26   while(t --) {
27     scanf("%s", str + 1);
28     len = strlen(str + 1);
29 
30     double last_x = 0, last_y = 0;
31     double area = 0;
32     
33     for(int i = 1; i <= len; ++ i) {
34       int q = str[i] - '0';
35 
36       if(q == 5) {
37         break;
38       }
39       area += cross(last_x, last_y, last_x + dx[q], last_y  + dy[q]);
40       last_x += dx[q]; last_y += dy[q];
41     }
42 
43     if((int)area & 1)
44       printf("%.0lf.5\n", floor(fabs(area) / 2));
45     else
46       printf("%.0lf\n", fabs(area) / 2);
47   }
48   return 0;
49 }
POJ 1654

 

题目4: POJ 1269 Intersecting Lines

题目大意:

给出直线对,判断这对直线的关系:平行,重合或者相交。

算法讨论:

假设直线1的两个点编号为1,2,直线2的两个点编号为3,4,如果 1,2,4的叉积为0, 1,2,3的叉积为0,则说明重合。

如果不重合,用两点式算斜率,为了避免除0错误,把两边除法比较变形为乘法。

如果不重合也不平行,就相交,用分点定理找交点。我的代码中只有规范相交的部分。具体代码请见刘汝佳《算法艺术与信息学竞赛》P357页。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <algorithm>
 5 #include <iostream>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const double eps = 1e-5;
11 
12 int n;
13 
14 struct Point {
15   double a, b;
16   Point(double _a = 0, double _b = 0):
17     a(_a), b(_b) {}
18 }c[5];
19 
20 double cross(int i, int j, int k) {
21   return (c[i].a - c[k].a) * (c[j].b - c[k].b) - (c[j].a - c[k].a) * (c[i].b - c[k].b);
22 }
23 
24 int dcmp(double s) {
25   return s > eps ? 1 : (s < -eps ? -1 : 0);
26 }
27 
28 void solve() {
29   if(fabs(cross(1, 2, 3)) <= eps && fabs(cross(1, 2, 4)) <= eps) puts("LINE");
30   else if((c[2].b - c[1].b) * (c[4].a - c[3].a) == (c[2].a - c[1].a) * (c[4].b - c[3].b))
31     puts("NONE");
32   else {
33     double s1 = cross(1, 2, 3), s2 = cross(1, 2, 4);
34     double x = (c[3].a * s2 - c[4].a * s1) / (s2 - s1);
35     double y = (c[3].b * s2 - c[4].b * s1) / (s2 - s1);
36     
37     printf("POINT %.2f %.2f\n", x, y);
38   }
39 }
40 
41 int main() {
42   double a, b;
43   
44   puts("INTERSECTING LINES OUTPUT");
45   scanf("%d", &n);
46   for(int i = 1; i <= n; ++ i) {
47     for(int j = 1; j <= 4; ++ j) {
48       scanf("%lf%lf", &a, &b);
49       c[j] = Point(a, b);
50     }
51     solve();
52   }
53   puts("END OF OUTPUT");
54   return 0;
55 }
POJ 1269

 

题目5: POJ 1113 Wall

题目大意:

求给出点集的凸包长度+一个半径为r的圆的周长和。

算法讨论:

看了下面这个图,你就什么都明白了。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <iostream>
 5 #include <algorithm>
 6 #include <cmath>
 7 
 8 #define pi 3.1415926535
 9 
10 using namespace std;
11 
12 const int N = 1000 + 5;
13 const double eps = 1e-6;
14 
15 int n, l;
16 double ans = 0;
17 
18 struct Point {
19   double x, y;
20 }p[N], st[N];
21 
22 double dist(Point a, Point b) {
23   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
24 }
25 
26 double cross(Point a, Point b, Point c) {
27   return (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y);
28 }
29 
30 bool cmp(Point a, Point b) {
31   if(cross(a, b, p[0]) == 0)
32     return dist(a, p[0]) < dist(b, p[0]);
33   return cross(a, b, p[0]) > 0;
34 }
35 
36 void Graham() {
37   int top = 2, k = 0;
38 
39   for(int i = 1; i < n; ++ i) {
40     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
41       k = i;
42   }
43   swap(p[k], p[0]);
44   sort(p + 1, p + n, cmp);
45   st[0] = p[0]; st[1] = p[1]; st[2] = p[2];
46   for(int i = 3; i < n; ++ i) {
47     while(top && cross(p[i], st[top], st[top - 1]) >= 0) top --;
48     st[++ top] = p[i];
49   }
50   st[++ top] = p[0];
51   for(int i = 0; i < top; ++ i)
52     ans += dist(st[i], st[i + 1]);
53 }
54 
55 int main() {
56   scanf("%d%d", &n, &l);
57   for(int i = 0; i < n; ++ i) {
58     scanf("%lf%lf", &p[i].x, &p[i].y);
59   }
60   Graham();
61   printf("%.0f", (double) ans + (double) 2 * pi * l);
62   return 0;
63 }
POJ 1113

 

题目6: POJ 3304 Segments

题目大意:

给出N个线段,是否有存在一条直线与所有线段都相交。

算法讨论:

这个直线一定经过线段的两个端点。所以我们枚举端点然后判断是否与每条线段相交即可。

判断相交的方法,用跨立实验。如果直线上的两个点与线段的两个点的叉积大于0,说明相交。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <iostream>
 5 #include <algorithm>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const int N = 100 + 5;
11 const double eps = 1e-8;
12 
13 int n, cnt;
14 
15 struct Line {
16   double a, b, c, d;
17 }l[N];
18 struct Point {
19   double x, y;
20 }p[N<<1];
21 double cross(int i, int j, int k) {
22   double t1 = (p[i].x - l[k].a) * (p[j].y - l[k].b) - (p[j].x - l[k].a) * (p[i].y - l[k].b);
23   double t2 = (p[i].x - l[k].c) * (p[j].y - l[k].d) - (p[j].x - l[k].c) * (p[i].y - l[k].d);
24   return t1 * t2;
25 }
26 int main() {
27   int t;
28 
29   scanf("%d", &t);
30 
31   while(t --) {
32     cnt = 0;
33     scanf("%d", &n);
34     for(int i = 1; i <= n; ++ i) {
35       scanf("%lf%lf%lf%lf", &l[i].a, &l[i].b, &l[i].c, &l[i].d);
36       p[++ cnt].x = l[i].a; p[cnt].y = l[i].b;
37       p[++ cnt].x = l[i].c; p[cnt].y = l[i].d;
38     }
39     if(n == 1 || n == 2) {
40       puts("Yes!");
41       continue;
42     }
43     for(int i = 1; i <= cnt; ++ i) {
44       for(int j = i + 1; j <= cnt; ++ j) {
45         if(fabs(p[i].x - p[j].x) < eps && fabs(p[i].y - p[j].y) < eps) continue;
46         for(int k = 1; k <= n; ++ k) {
47           if(cross(i, j, k) > 0) {
48             break;
49           }
50           if(k == n) {
51             puts("Yes!");
52             goto A;
53           }
54         }
55       }
56     }
57     puts("No!");
58     A:;
59   }
60 
61   return 0;
62 }
POJ 3304

 

题目7: POJ 2187 Beauty Conteset

题目大意:

求平面点集最远点距离平方。

算法讨论:

旋转卡壳直接上吧。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <algorithm>
 5 #include <iostream>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const int N = 50000 + 5;
11 
12 int n, top = 2;
13 double ans;
14 
15 struct Point {
16   double x, y;
17 }p[N], st[N];
18 
19 double dist(Point a, Point b) {
20   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
21 }
22 
23 double cross(Point a, Point b, Point c) {
24   return (a.x - c.x) * (b.y - c.y) - (b.x - c.x) * (a.y - c.y);
25 }
26 
27 double cal(Point a, Point b) {
28   return pow(a.x - b.x, 2) + pow(a.y - b.y, 2);
29 }
30 
31 bool cmp(Point a, Point b) {
32   if(cross(a, b, p[0]) == 0)
33     return dist(a, p[0]) < dist(b, p[0]);
34   return cross(a, b, p[0]) > 0;
35 }
36 
37 void Graham() {
38   int k = 0;
39 
40   for(int i = 1; i < n; ++ i)
41     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
42       k = i;
43   swap(p[0], p[k]);
44   sort(p + 1, p + n, cmp);
45   st[0] = p[0]; st[1] = p[1]; st[2] = p[2];
46   for(int i = 3; i < n; ++ i) {
47     while(top && cross(p[i], st[top], st[top - 1]) >= 0) top --;
48     st[++ top] = p[i];
49   }
50   st[++ top] = p[0];
51 }
52 
53 void rotate() {
54   int q = 1;
55 
56   for(int i = 0; i < top; ++ i) {
57     while(cross(st[i + 1], st[q + 1], st[i]) > cross(st[i + 1], st[q], st[i]))
58       q = (q + 1) % top;
59     ans = max(ans, max(cal(st[i], st[q]), cal(st[i + 1], st[q + 1])));
60   }
61 }
62 
63 int main() {
64   scanf("%d", &n);
65   for(int i = 0; i < n; ++ i) {
66     scanf("%lf%lf", &p[i].x, &p[i].y);
67   }
68   Graham();
69   rotate();
70   printf("%.0f", ans);
71   return 0;
72 }
POJ 2187

 

题目8: POJ 1584 A Round Peg in a Ground Hole

题目大意:

给一个圆和一些点。你要做三件事:判断这些点是否组成一个凸多边形。 圆的圆心是否在多边形内。 圆是否在凸多边形内。

算法讨论:

对于第一个件事,我们直接做Graham然后看有多少个点在凸包上。注意排序的时候,如果三个点在一个竖线上的情况要在cmp函数里面判断一下。

对于第二件事,由于这是一个凸多边形,所以我们用回转角法来判断是否在多边形内。注意这里eps不要取的太小,否则会被卡精度。

对于第三件事,最简单的,直接算距离,注意相切的情况也算在多边形内部。

  1 #include <cstdio>
  2 #include <iostream>
  3 #include <cstring>
  4 #include <cstdlib>
  5 #include <algorithm>
  6 #include <cmath>
  7 
  8 #define pi 3.1415926535
  9 
 10 using namespace std;
 11 
 12 const int N = 100000 + 5;
 13 const double eps = 1e-5;
 14   
 15 int n, top = 2;
 16 double cx, cy, cr;
 17 
 18 struct Point {
 19   double x, y;
 20 }p[N], st[N];
 21 
 22 double dist(Point a, Point b) {
 23   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
 24 }
 25 
 26 double cross(Point a, Point b, Point c) {
 27   return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
 28 }
 29 
 30 bool cmp(Point a, Point b) {
 31   if(cross(a, b, p[0]) == 0) {
 32     if(a.x == b.x && a.x == p[0].x)
 33       return dist(a, p[0]) > dist(b, p[0]);
 34     else
 35       return dist(a, p[0]) < dist(b, p[0]);
 36   }
 37   return cross(a, b, p[0]) > 0;
 38 }
 39 
 40 void Graham() {
 41   int k = 0;
 42   
 43   top = 2;
 44   for(int i = 1; i < n; ++ i) {
 45     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
 46       k = i;
 47   }
 48   swap(p[k], p[0]);
 49   sort(p + 1, p + n, cmp);
 50   st[0] = p[0]; st[1] = p[1]; st[2] = p[2];
 51   for(int i = 3; i < n; ++ i) {
 52     while(top && cross(p[i], st[top], st[top - 1]) > 0) top --;
 53     st[++ top] = p[i];
 54   }
 55   st[++ top] = p[0];
 56 }
 57 
 58 double len(int i) {
 59   return sqrt(pow(st[i].x - cx, 2) + pow(st[i].y - cy, 2));
 60 }
 61 
 62 double cal(int i, int j) {
 63   double t1 = (st[i].x - cx) * (st[j].x - cx) + (st[i].y - cy) * (st[j].y - cy);
 64   double t2 = len(i) * len(j);
 65 
 66   return t1 / t2;
 67 }
 68 
 69 int main() {
 70   while(1) {
 71     scanf("%d", &n);
 72     if(n < 3) break;
 73     scanf("%lf%lf%lf", &cr, &cx, &cy);
 74     for(int i = 0; i < n; ++ i) {
 75       scanf("%lf%lf", &p[i].x, &p[i].y);
 76     }
 77     Graham();
 78     if(top != n) {
 79       puts("HOLE IS ILL-FORMED");
 80       continue;
 81     }
 82 
 83     double tmp = 0;
 84     bool flag = false;
 85     
 86     for(int i = 0; i < top; ++ i) {
 87       tmp += (double)acos(cal(i, i + 1)) * 180 / pi;
 88     }
 89     if(fabs(tmp - 360.00000) > eps) {
 90       puts("PEG WILL NOT FIT");
 91       continue;
 92     }
 93     for(int i = 0; i < top; ++ i) {
 94       tmp = (st[i].x - cx) * (st[i + 1].y - cy) - (st[i + 1].x - cx) * (st[i].y - cy);
 95       tmp = fabs(tmp);
 96       tmp = tmp / dist(st[i], st[i + 1]);
 97       if(tmp - cr < -eps) {
 98         flag = true;
 99         break;
100       }
101     }
102     if(flag) {
103       puts("PEG WILL NOT FIT");
104     }
105     else {
106       puts("PEG WILL FIT");
107     }
108   }
109   return 0;
110 }
POJ 1584

 

题目9: POJ 2079 Triangle

题目大意:

求点集中面积最大的三角形面积。

算法讨论:

类似旋转卡壳的算法。感觉这是个模板题。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <iostream>
 5 #include <algorithm>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const int N = 50000 + 5;
11 
12 int n, top;
13 double ans = 0;
14 
15 struct Point {
16   double x, y;
17 }p[N], st[N];
18 
19 double dist(Point a, Point b) {
20   return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
21 }
22 
23 double cross(Point a, Point b, Point c) {
24   return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
25 }
26 
27 bool cmp(Point a, Point b) {
28   if(cross(a, b, p[0]) == 0)
29     return dist(a, p[0]) < dist(b, p[0]);
30   return cross(a, b, p[0]) > 0;
31 }
32 
33 void Graham() {
34   int k = 0; top = 2;
35 
36   for(int i = 1; i < n; ++ i) {
37     if(p[i].x < p[k].x || (p[i].x == p[k].x && p[i].y < p[k].y))
38       k = i;
39   }
40   swap(p[0], p[k]);
41   sort(p + 1, p + n, cmp);
42   st[0] = p[0]; st[1]= p[1]; st[2] = p[2];
43   for(int i = 3; i < n; ++ i) {
44     while(top && cross(p[i], st[top], st[top - 1]) >= 0)top --;
45     st[++ top] = p[i];
46   }
47   st[++ top] = p[0];
48 }
49 
50 void rotate_triangle() {
51   int i, j, k, kk;
52 
53   for(i = 0; i < top; ++ i) {
54     j = (i + 1) % top;
55     k = (j + 1) % top;
56     while(k != i && cross(st[i], st[j], st[k]) < cross(st[i], st[j], st[k + 1]))
57       k = (k + 1) % top;
58     if(k == i) continue;
59     kk = (k + 1) % top;
60     while(j != kk && k != i) {
61       ans = max(ans, fabs(cross(st[i], st[j], st[k])));
62       while(k != i && cross(st[i], st[j], st[k]) < cross(st[i], st[j], st[k + 1]))
63         k = (k + 1) % top;
64       j = (j + 1) % top;
65     }
66   }
67 }
68 
69 int main() {
70   while(scanf("%d", &n) && n > 0) {
71     ans = 0;
72     for(int i = 0; i < n; ++ i) {
73       scanf("%lf%lf", &p[i].x, &p[i].y);
74     }
75     Graham();
76     rotate_triangle();
77     printf("%.2f\n", (double) ans / 2);
78   }
79 
80   return 0;
81 }
POJ 2079

 

题目10: POJ 2653 Pick-up sticks

题目大意:

给一坨线段,问哪里线段可以被看到。

算法讨论:

在网上看到了两种解法,一个是O(N^2)的暴力,但是不知道为什么对于10W的数据可以跑过。就是枚举每一个线段i,如果有线段和其相交,

那么这个线段就是不可见。

另一个解法就是对于当前线段,判断其是否与队列中的线段有交点,如果有,把有交点的那个线段出队,把这个入队,否则两个一起入队。

看样子是一样的方法啊。我的代码还是没有不规范判断相交的部分。

 1 #include <iostream>
 2 #include <cstdlib>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <cstdio>
 6 #include <cmath>
 7 
 8 using namespace std;
 9 
10 const int N = 100000 + 5;
11 const double eps = 1e-6;
12 
13 int n;
14 bool flag[N];
15 
16 struct Point {
17   double x, y;
18   Point(double _x = 0, double _y = 0):
19     x(_x), y(_y) {}
20 };
21 struct Line {
22   Point A, B;
23 }l[N];
24 
25 double cross(Point a, Point b, Point c) {
26   return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
27 }
28 
29 int dcmp(double x) {
30   return x > eps ? 1 : (x < -eps ? -1 : 0);
31 }
32 
33 int segcross(Point a, Point b, Point c, Point d) {
34   int d1, d2, d3, d4;
35 
36   d1 = dcmp(cross(a, b, c));
37   d2 = dcmp(cross(a, b, d));
38   d3 = dcmp(cross(c, d, a));
39   d4 = dcmp(cross(c, d, b));
40 
41   if((d1 ^ d2) == -2 && (d3 ^ d4) == -2)
42     return 1;
43   return 0;
44 }
45 
46 int main() {
47   double a, b, c, d;
48   
49   while(scanf("%d", &n) && n) {
50     for(int i = 1; i <= n; ++ i ) {
51       scanf("%lf%lf%lf%lf", &a, &b, &c, &d);
52       l[i].A = (Point){a, b};
53       l[i].B = (Point){c, d};
54       flag[i] = true;
55     }
56     for(int i = 1; i <= n; ++ i) {
57       for(int j = i + 1; j <= n; ++ j) {
58         if(segcross(l[i].A, l[i].B, l[j].A, l[j].B)) {
59           flag[i] = false;
60           break;
61         }
62       }
63     }
64     bool tmp = false;
65     
66     printf("Top sticks: ");
67     for(int i = 1; i <= n; ++ i) {
68       if(flag[i]) {
69         if(!tmp) {
70           printf("%d", i);
71           tmp = true;
72         }
73         else {
74           printf(", %d", i);
75         }
76       } 
77     }
78     puts(".");
79   }
80 
81   return 0;
82 }
POJ 2653

 

posted @ 2016-02-16 09:55  漫步者。!~  阅读(386)  评论(0编辑  收藏  举报