关于堆结构的详解

一、定义

堆的定义

堆其实就是一棵完全二叉树(若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边),

定义为:具有n个元素的序列(h1,h2,...hn),当且仅当满足(hi>=h2i,hi>=h2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆

大顶堆

堆顶元素(即第一个元素)为最大项,并且(hi>=h2i,hi>=h2i+1)

小顶堆

堆顶元素为最小项,并且(hi<=h2i,hi<=2i+1)

二、构建堆(大顶堆)

方法

序列对应一个完全二叉树,从最后一个分支节点(n div 2)开始,到跟(1)为止,一次对每个分支节点进行调整(下沉),以便形成以每个分支节点为根的堆,当最后对树根节点进行调整后,整个树就变成一个堆

实例

先给出一个序列:45,36,18,53,72,30,48,93,15,35

要想此序列称为一个堆,我们按照上述方法,首先从最后一个分支节点(10/2),其值为72开始,一次对每个分支节点53,18,36,45进行调整(下沉)

图解流程



代码实现

/*根据树的性质建堆,树节点前一半一定是分支节点,即有孩子的,所以我们从这里开始调整出初始堆*/    
 public static void adjust(List<Integer> heap){  
    for (int i = heap.size() / 2; i > 0; i--)    
        adjust(heap,i, heap.size()-1);    
        
    System.out.println("=================================================");  
    System.out.println("调整后的初始堆:");  
      print(heap);  
  }  
/**  
 * 调整堆,使其满足堆得定义  
 * @param i  
 * @param n  
 */    
public static void adjust(List<Integer> heap,int i, int n) {    
     
    int child;    
    for (; i <= n / 2; ) {    
        child = i * 2;    
        if(child+1<=n&&heap.get(child)<heap.get(child+1))    
            child+=1;/*使child指向值较大的孩子*/    
        if(heap.get(i)< heap.get(child)){    
            swap(heap,i, child);    
            /*交换后,以child为根的子树不一定满足堆定义,所以从child处开始调整*/    
            i = child;    
             
        }  else break;  
    }    
}   

//把list中的a,b位置的值互换   
public static void swap(List<Integer> heap, int a, int b) {   
    //临时存储child位置的值   
    int temp = (Integer) heap.get(a);   

    //把index的值赋给child的位置   
    heap.set(a, heap.get(b));   

    //把原来的child位置的数值赋值给index位置   
    heap.set(b, temp);   
}   

三、堆排序

堆排序的性能介绍(适合处理数据量大的序列)

由于它在直接选择排序的基础上利用了比较结果形成。效率提高很大。它完成排序的总比较次数为O(nlog2n)。

堆排序需要两个步骤,一个建堆,而是交换重新建堆。比较复杂,所以一般在小规模的序列中不合适,但对于较大的序列,将表现出优越的性能
  

算法描述(建堆,交换重新建堆):

  • 初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大
  • 然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆
  • 依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列

代码实现

//对一个最大堆heap排序  
public static void heapSort(List<Integer> heap) {    
    
   for (int i = heap.size()-1; i > 0; i--) {    
    /*把根节点跟最后一个元素交换位置,调整剩下的n-1个节点,即可排好序*/    
       swap(heap,1, i);    
       adjust(heap,1, i - 1);    
   }    
}

四、堆排序的应用

场景:

如何从100万个数中找出最大的前100个数

算法分析:

先取出前100个数,维护一个100个数的最小堆,遍历一遍剩余的元素,在此过程中维护堆就可以了。

  • 取前m个元素(例如m=100),建立一个小顶堆
  • 顺序读取后续元素,直到结束。每次读取一个元素,如果该元素比堆顶元素小,直接丢弃
    如果大于堆顶元素,则用该元素替换堆顶元素,然后保持最小堆性质。
  • 最后这个堆中的元素就是前最大的100个
posted @ 2018-09-17 15:35  StoneGeek  阅读(20683)  评论(2编辑  收藏  举报