互联网UV,PU,TopN统计
1. UV、PV、TopN概念
1.1 UV(unique visitor) 即独立访客数
指访问某个站点或点击某个网页的不同IP地址的人数。在同一天内,UV只记录第一次进入网站的具有独立IP的访问者,在同一天内再次访问该网站则不计数。UV提供了一定时间内不同观众数量的统计指标,而没有反应出网站的全面活动。
1.2 PV(page view)页面浏览量或点击量
页面浏览量或点击量,是衡量一个网站或网页用户访问量。具体的说,PV值就是所有访问者在24小时(0点到24点)内看了某个网站多少个页面或某个网页多少次。PV是指页面刷新的次数,每一次页面刷新,就算做一次PV流量。
1.3 TopN
顾名思义,就是获取前10或前N的数据。
2. 离线计算UV、PV、TopN
这里主要使用hive或者MapReduce计算。
2.1 统计每个时段网站的PV和UV
hive> select date,hour,count(url) pv, count(distinct guid) uv from track_log group by date, hour; date hour pv uv 20160624 18 64972 23938 20160624 19 61162 22330
2.2 hive中创建结果表
create table db_track_daily_hour_visit( date string, hour string, pv string, uv string ) row format delimited fields terminated by "\t";
2.3 结果写入Hive表(这里最好使用shell脚本去做)
结果步骤2.1与2.2,把2.1产生的结果数据写入到2.2的结果表中
hive> insert overwrite table db_track_daily_hour_visit select date, hour, count(url), pv, count(distinct guid) uv from track_log group by date, hour;
2.4 创建crontab命令,每天定时调度2.3的shell脚本
2.5 mysql中创建一张表,永久存储分析结果
mysql> create table visit( -> date int, -> hour int, -> pv bigint, -> uv bigint );
2.6 利用sqoop导入数据到Mysql
注:以下代码也可以放到crontab里面每天自动执行
$ bin/sqoop --options-file job1/visit.opt
mysql> select * from visit; +----------+------+-------+-------+ | date | hour | pv | uv | +----------+------+-------+-------+ | 20160624 | 18 | 64972 | 23938 | | 20160624 | 19 | 61162 | 22330 | +----------+------+-------+-------+
3. 实时计算UV、PV、TopN
在实时流式计算中,最重要的是在任何情况下,消息不重复、不丢失,即Exactly-once。本文以Kafka->Spark Streaming->Redis为例,一方面说明一下如何做到Exactly-once,另一方面说明一下如何计算实时去重指标的。
3.1 关于数据源
日志格式为:
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=DEIBAH&siteid=3
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=GLLIEG&siteid=3
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HIJMEC&siteid=8
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HMGBDE&siteid=3
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HIJFLA&siteid=4
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=JCEBBC&siteid=9
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=KJLAKG&siteid=8
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=FHEIKI&siteid=3
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=IGIDLB&siteid=3
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=IIIJCD&siteid=5
日志是由测试程序模拟产生的,字段之间由|~|分隔。pcid为计算机pc的id,siteid为网站id
3.2 实时计算需求
分天、分小时PV、UV;
分天、分小时、分网站(siteid)PV、UV;
3.3 Spark Streaming消费Kafka数据
在Spark Streaming中消费Kafka数据,保证Exactly-once的核心有三点:
①使用Direct方式连接Kafka;
②自己保存和维护Offset;
③更新Offset和计算在同一事务中完成;
后面的Spark Streaming程序,主要有以下步骤:
①启动后,先从Redis中获取上次保存的Offset,Redis中的key为“topic_partition”,即每个分区维护一个Offset;
②使用获取到的Offset,创建DirectStream;
③在处理每批次的消息时,利用Redis的事务机制,确保在Redis中指标的计算和Offset的更新维护,在同一事务中完成。只有这两者同步,才能真正保证消息的Exactly-once。
./spark-submit \ --class com.lxw1234.spark.TestSparkStreaming \ --master local[2] \ --conf spark.streaming.kafka.maxRatePerPartition=20000 \ --jars /data1/home/dmp/lxw/realtime/commons-pool2-2.3.jar,\ /data1/home/dmp/lxw/realtime/jedis-2.9.0.jar,\ /data1/home/dmp/lxw/realtime/kafka-clients-0.11.0.1.jar,\ /data1/home/dmp/lxw/realtime/spark-streaming-kafka-0-10_2.11-2.2.1.jar \ /data1/home/dmp/lxw/realtime/testsparkstreaming.jar \ --executor-memory 4G \ --num-executors 1
在启动Spark Streaming程序时候,有个参数最好指定:
spark.streaming.kafka.maxRatePartition=20000(每秒钟从topic的每个partition最多消费的消息条数)
如果程序第一次运行,或者因为某种原因暂停了很久重新启动时候,会积累很多消息,如果这些消息同时被消费,很有可能会因为内存不够而挂掉,因此,需要根据实际的数据量大小,以及批次的间隔时间来设置该参数,以限定批次的消息量。
如果该参数设置20000,而批次间隔时间未10秒,那么每个批次最多从Kafka中消费20万消息。
3.4 Redis中的数据模型
① 分小时、分网站PV
普通K-V结构,计算时候使用incr命令递增,
Key为 “site_pv_网站ID_小时”,
如:site_pv_9_2018-02-21-00、site_pv_10_2018-02-12-01
② 分小时PV、分天PV(分天的暂无)
普通K-V结构,计算时候使用incr命令递增,
Key为 “pv_小时”,如:pv_2018-02-21-14、pv_2018-02-22-03
该数据模型用于计算按小时及按天总PV。
③ 分小时、分网站UV
Set结构,计算时候使用sadd命令添加,
Key为 “site_uv_网站ID_小时”,如:site_uv_8_2018-02-21-12、site_uv_6_2019-09-12-09
该数据模型用户计算按小时和网站的总UV(获取时候使用SCARD命令获取Set元素个数)
④ 分小时UV、分天UV(分天的暂无)
Set结构,计算时候使用sadd命令添加,
Key为 “uv_小时”,如:uv_2018-02-21-08、uv_2018-02-20-09
该数据模型用户计算按小时及按天的总UV(获取时候使用SCARD命令获取Set元素个数)
注意:这些Key对应的时间,均有实际消息中的第一个字段(时间)而定。
3.5 代码程序
maven依赖包
<dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>${hadoop.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>${spark.version}</version> </dependency> <!-- streaming kafka redis start--> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>2.3</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>2.9.0</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>2.1.0</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>2.1.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-10_2.11</artifactId> <version>2.4.3</version> </dependency> <!-- streaming kafka redis end --> <dependency> <groupId>ch.ethz.ganymed</groupId> <artifactId>ganymed-ssh2</artifactId> <version>262</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-xml</artifactId> <version>2.11.0-M4</version> </dependency> </dependencies>
kafka偏移量管理工具类KafkaOffsetUtils:
package com.swordfall.common import java.time.Duration import org.apache.kafka.clients.consumer.{Consumer, ConsumerConfig, KafkaConsumer, NoOffsetForPartitionException} import org.apache.kafka.common.TopicPartition import scala.collection.JavaConversions._ import scala.collection.mutable object KafkaOffsetUtils { /** * 获取最小offset * * @param consumer 消费者 * @param partitions topic分区 * @return */ def getEarliestOffsets(consumer: Consumer[_, _], partitions: Set[TopicPartition]): Map[TopicPartition, Long] = { consumer.seekToBeginning(partitions) partitions.map(tp => tp -> consumer.position(tp)).toMap } /** * 获取最小offset * Returns the earliest (lowest) available offsets, taking new partitions into account. * * @param kafkaParams kafka客户端配置 * @param topics 获取offset的topic */ def getEarliestOffsets(kafkaParams: Map[String, Object], topics: Iterable[String]): Map[TopicPartition, Long] = { val newKafkaParams = mutable.Map[String, Object]() newKafkaParams ++= kafkaParams newKafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") val consumer: KafkaConsumer[String, Array[Byte]] = new KafkaConsumer[String, Array[Byte]](newKafkaParams) consumer.subscribe(topics) val parts = consumer.assignment() consumer.seekToBeginning(parts) consumer.pause(parts) val offsets = parts.map(tp => tp -> consumer.position(tp)).toMap consumer.unsubscribe() consumer.close() offsets } /** * 获取最大offset * * @param consumer 消费者 * @param partitions topic分区 * @return */ def getLatestOffsets(consumer: Consumer[_, _], partitions: Set[TopicPartition]): Map[TopicPartition, Long] = { consumer.seekToEnd(partitions) partitions.map(tp => tp -> consumer.position(tp)).toMap } /** * 获取最大offset * Returns the latest (highest) available offsets, taking new partitions into account. * * @param kafkaParams kafka客户端配置 * @param topics 需要获取offset的topic **/ def getLatestOffsets(kafkaParams: Map[String, Object], topics: Iterable[String]): Map[TopicPartition, Long] = { val newKafkaParams = mutable.Map[String, Object]() newKafkaParams ++= kafkaParams newKafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest") val consumer: KafkaConsumer[String, Array[Byte]] = new KafkaConsumer[String, Array[Byte]](newKafkaParams) consumer.subscribe(topics) val parts = consumer.assignment() consumer.seekToEnd(parts) consumer.pause(parts) val offsets = parts.map(tp => tp -> consumer.position(tp)).toMap consumer.unsubscribe() consumer.close() offsets } /** * 获取消费者当前offset * * @param consumer 消费者 * @param partitions topic分区 * @return */ def getCurrentOffsets(consumer: Consumer[_, _], partitions: Set[TopicPartition]): Map[TopicPartition, Long] = { partitions.map(tp => tp -> consumer.position(tp)).toMap } /** * 获取offsets * * @param kafkaParams kafka参数 * @param topics topic * @return */ def getCurrentOffset(kafkaParams: Map[String, Object], topics: Iterable[String]): Map[TopicPartition, Long] = { val offsetResetConfig = kafkaParams.getOrElse(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest").toString.toLowerCase() val newKafkaParams = mutable.Map[String, Object]() newKafkaParams ++= kafkaParams newKafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "none") val consumer: KafkaConsumer[String, Array[Byte]] = new KafkaConsumer[String, Array[Byte]](newKafkaParams) consumer.subscribe(topics) val notOffsetTopicPartition = mutable.Set[TopicPartition]() try { consumer.poll(Duration.ofMillis(0)) } catch { case ex: NoOffsetForPartitionException => println(s"consumer topic partition offset not found:${ex.partition()}") notOffsetTopicPartition.add(ex.partition()) } val parts = consumer.assignment().toSet consumer.pause(parts) val topicPartition = parts.diff(notOffsetTopicPartition) //获取当前offset val currentOffset = mutable.Map[TopicPartition, Long]() topicPartition.foreach(x => { try { currentOffset.put(x, consumer.position(x)) } catch { case ex: NoOffsetForPartitionException => println(s"consumer topic partition offset not found:${ex.partition()}") notOffsetTopicPartition.add(ex.partition()) } }) //获取earliiestOffset val earliestOffset = getEarliestOffsets(consumer, parts) earliestOffset.foreach(x => { val value = currentOffset.get(x._1) if (value.isEmpty){ currentOffset(x._1) = x._2 }else if (value.get < x._2){ println(s"kafka data is lost from partition:${x._1} offset ${value.get} to ${x._2}") currentOffset(x._1) = x._2 } }) // 获取lastOffset val lateOffset = if (offsetResetConfig.equalsIgnoreCase("earliest")){ getLatestOffsets(consumer, topicPartition) }else { getLatestOffsets(consumer, parts) } lateOffset.foreach(x => { val value = currentOffset.get(x._1) if (value.isEmpty || value.get > x._2){ currentOffset(x._1) = x._2 } }) consumer.unsubscribe() consumer.close() currentOffset.toMap } }
Redis资源管理工具类InternalRedisClient:
package com.swordfall.streamingkafka import org.apache.commons.pool2.impl.GenericObjectPoolConfig import redis.clients.jedis.JedisPool /** * @Author: Yang JianQiu * @Date: 2019/9/10 0:19 */ object InternalRedisClient extends Serializable { @transient private var pool: JedisPool = null def makePool(redisHost: String, redisPort: Int, redisTimeout: Int, maxTotal: Int, maxIdle: Int, minIdle: Int): Unit ={ makePool(redisHost, redisPort, redisTimeout, maxTotal, maxIdle, minIdle, true, false, 10000) } def makePool(redisHost: String, redisPort: Int, redisTimeout: Int, maxTotal: Int, maxIdle: Int, minIdle: Int, testOnBorrow: Boolean, testOnReturn: Boolean, maxWaitMills: Long): Unit ={ if (pool == null){ val poolConfig = new GenericObjectPoolConfig() poolConfig.setMaxTotal(maxTotal) poolConfig.setMaxIdle(maxIdle) poolConfig.setMinIdle(minIdle) poolConfig.setTestOnBorrow(testOnBorrow) poolConfig.setTestOnReturn(testOnReturn) poolConfig.setMaxWaitMillis(maxWaitMills) pool = new JedisPool(poolConfig, redisHost, redisPort, redisTimeout) val hook = new Thread{ override def run = pool.destroy() } sys.addShutdownHook(hook.run) } } def getPool: JedisPool = { if (pool != null) pool else null } }
核心Spark Streaming处理kafka数据,并统计UV、PV到redis里面,同时在redis里面维护kafka偏移量:
package com.swordfall.streamingkafka import com.swordfall.common.KafkaOffsetUtils import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka.common.TopicPartition import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies} import org.apache.spark.streaming.{Seconds, StreamingContext} import redis.clients.jedis.Pipeline /** * 获取topic最小的offset */ object SparkStreamingKafka { def main(args: Array[String]): Unit = { val brokers = "192.168.187.201:9092" val topic = "nginx" val partition: Int = 0 // 测试topic只有一个分区 val start_offset: Long = 0L // Kafka参数 val kafkaParams = Map[String, Object]( "bootstrap.servers" -> brokers, "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "test", "enable.auto.commit" -> (false: java.lang.Boolean), "auto.offset.reset" -> "latest" ) // Redis configurations val maxTotal = 10 val maxIdle = 10 val minIdle = 1 val redisHost = "192.168.187.201" val redisPort = 6379 val redisTimeout = 30000 // 默认db,用户存放Offset和pv数据 val dbDefaultIndex = 8 InternalRedisClient.makePool(redisHost, redisPort, redisTimeout, maxTotal, maxIdle, minIdle) val conf = new SparkConf().setAppName("SparkStreamingKafka").setIfMissing("spark.master", "local[2]") val ssc = new StreamingContext(conf, Seconds(10)) // 从Redis获取上一次存的Offset val jedis = InternalRedisClient.getPool.getResource jedis.select(dbDefaultIndex) val topic_partition_key = topic + "_" + partition val lastSavedOffset = jedis.get(topic_partition_key) var fromOffsets: Map[TopicPartition, Long] = null if (null != lastSavedOffset){ var lastOffset = 0L try{ lastOffset = lastSavedOffset.toLong }catch{ case ex: Exception => println(ex.getMessage) println("get lastSavedOffset error, lastSavedOffset from redis [" + lastSavedOffset + "]") System.exit(1) } // 设置每个分区起始的Offset fromOffsets = Map{ new TopicPartition(topic, partition) -> lastOffset } println("lastOffset from redis -> " + lastOffset) }else{ //等于null,表示第一次, redis里面没有存储偏移量,但是可能会存在kafka存在一部分数据丢失或者过期,但偏移量没有记录在redis里面, // 偏移量还是按0的话,会导致偏移量范围出错,故需要拿到earliest或者latest的偏移量 fromOffsets = KafkaOffsetUtils.getCurrentOffset(kafkaParams, List(topic)) } InternalRedisClient.getPool.returnResource(jedis) // 使用Direct API 创建Stream val stream = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Assign[String, String](fromOffsets.keys.toList, kafkaParams, fromOffsets) ) // 开始处理批次消息 stream.foreachRDD{ rdd => val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges val result = processLogs(rdd) println("================= Total " + result.length + " events in this batch ..") val jedis = InternalRedisClient.getPool.getResource // redis是单线程的,下一次请求必须等待上一次请求执行完成后才能继续执行,然而使用Pipeline模式,客户端可以一次性的发送多个命令,无需等待服务端返回。这样就大大的减少了网络往返时间,提高了系统性能。 val pipeline: Pipeline = jedis.pipelined() pipeline.select(dbDefaultIndex) pipeline.multi() // 开启事务 // 逐条处理消息 result.foreach{ record => // 增加网站小时pv val site_pv_by_hour_key = "site_pv_" + record.site_id + "_" + record.hour pipeline.incr(site_pv_by_hour_key) // 增加小时总pv val pv_by_hour_key = "pv_" + record.hour pipeline.incr(pv_by_hour_key) // 使用set保存当天每个小时网站的uv val site_uv_by_hour_key = "site_uv_" + record.site_id + "_" + record.hour pipeline.sadd(site_uv_by_hour_key, record.user_id) // 使用set保存当天每个小时的uv val uv_by_hour_key = "uv_" + record.hour pipeline.sadd(uv_by_hour_key, record.user_id) } // 更新Offset offsetRanges.foreach{ offsetRange => println("partition: " + offsetRange.partition + " fromOffset: " + offsetRange.fromOffset + " untilOffset: " + offsetRange.untilOffset) val topic_partition_key = offsetRange.topic + "_" + offsetRange.partition pipeline.set(topic_partition_key, offsetRange.untilOffset + "") } pipeline.exec() // 提交事务 pipeline.sync() // 关闭pipeline InternalRedisClient.getPool.returnResource(jedis) } ssc.start() ssc.awaitTermination() } case class MyRecord(hour: String, user_id: String, site_id: String) def processLogs(messages: RDD[ConsumerRecord[String, String]]): Array[MyRecord] = { messages.map(_.value()).flatMap(parseLog).collect() } def parseLog(line: String): Option[MyRecord] = { val ary: Array[String] = line.split("\\|~\\|", -1) try{ val hour = ary(0).substring(0, 13).replace("T", "-") val uri = ary(2).split("[=|&]", -1) val user_id = uri(1) val site_id = uri(3) return scala.Some(MyRecord(hour, user_id, site_id)) }catch{ case ex: Exception => println(ex.getMessage) } return None } }
4. 总结
【github地址】
https://github.com/SwordfallYeung/SparkStreamingDemo
【参考资料】
http://www.cj318.cn/?p=4
https://blog.csdn.net/liam08/article/details/80155006
http://www.ikeguang.com/2018/08/03/statistic-hive-daily-week-month/
https://dongkelun.com/2018/06/25/KafkaUV/
https://blog.csdn.net/wwwzydcom/article/details/89506227
http://lxw1234.com/archives/2018/02/901.htm
https://blog.csdn.net/qq_35946969/article/details/83654369