async/await的基础用法
一、async/await的优点
1)方便级联调用:即调用依次发生的场景;
2)同步代码编写方式: Promise使用then函数进行链式调用,一直点点点,是一种从左向右的横向写法;async/await从上到下,顺序执行,就像写同步代码一样,更符合代码编写习惯;
3)多个参数传递: Promise的then函数只能传递一个参数,虽然可以通过包装成对象来传递多个参数,但是会导致传递冗余信息,频繁的解析又重新组合参数,比较麻烦;async/await没有这个限制,可以当做普通的局部变量来处理,用let或者const定义的块级变量想怎么用就怎么用,想定义几个就定义几个,完全没有限制,也没有冗余工作;
4)同步代码和异步代码可以一起编写: 使用Promise的时候最好将同步代码和异步代码放在不同的then节点中,这样结构更加清晰;async/await整个书写习惯都是同步的,不需要纠结同步和异步的区别,当然,异步过程需要包装成一个Promise对象放在await关键字后面;
5)基于协程: Promise是根据函数式编程的范式,对异步过程进行了一层封装,async/await基于协程的机制,是真正的“保存上下文,控制权切换……控制权恢复,取回上下文”这种机制,是对异步过程更精确的一种描述;
6)async/await是对Promise的优化: async/await是基于Promise的,是进一步的一种优化,不过在写代码时,Promise本身的API出现得很少,很接近同步代码的写法;
二、协程
- 进程>线程>协程
- 协程的第一大优势是具有极高的执行效率,因为子程序切换不是线程切换,而是由程序自身控制,因此没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显;
- 协程的第二大优势是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多;
- 协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行,需要注意的是:在一个子程序中中断,去执行其他子程序,这并不是函数调用,有点类似于CPU的中断;
- 用汽车和公路举个例子:js公路只是单行道(主线程),但是有很多车道(辅助线程)都可以汇入车流(异步任务完成后回调进入主线程的任务队列);generator把js公路变成了多车道(协程实现),但是同一时间只有一个车道上的车能开(依然单线程),不过可以自由变道(移交控制权);
- 协程意思是多个线程互相协作,完成异步任务,运行流程大致如下:
1)协程A开始执行;
2)协程A执行到一半,进入暂停,执行权转移到协程B;
3)一段时间后,协程B交还执行权;
4)协程A恢复执行; - 协程是一个无优先级的子程序调度组件,允许子程序在特定的地点挂起恢复;
- 线程包含于进程,协程包含于线程,只要内存足够,一个线程中可以有任意多个协程,但某一个时刻只能有一个协程在运行,多个协程分享该线程分配到的计算机资源;
- 就实际使用理解来说,协程允许我们写同步代码的逻辑,却做着异步的事,避免了回调嵌套,使得代码逻辑清晰;
- 何时挂起,唤醒协程:协程是为了使用异步的优势,异步操作是为了避免IO操作阻塞线程,那么协程挂起的时刻应该是当前协程发起异步操作的时候,而唤醒应该在其他协程退出,并且他的异步操作完成时;
- 单线程内开启协程,一旦遇到io,从应用程序级别(而非操作系统)控制切换对比操作系统控制线程的切换,用户在单线程内控制协程的切换,优点如下:
1)协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级;
2)单线程内就可以实现并发的效果,最大限度地利用cpu;
// 传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。 // 如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高: import time def consumer(): r = '' while True: n = yield r if not n: return print('[CONSUMER] Consuming %s...' % n) time.sleep(1) r = '200 OK' def produce(c): c.next() n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) print('[PRODUCER] Consumer return: %s' % r) c.close() if __name__=='__main__': c = consumer() produce(c)
[PRODUCER] Producing 1... [CONSUMER] Consuming 1... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 2... [CONSUMER] Consuming 2... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 3... [CONSUMER] Consuming 3... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 4... [CONSUMER] Consuming 4... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 5... [CONSUMER] Consuming 5... [PRODUCER] Consumer return: 200 OK
注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:
首先调用c.next()启动生成器;
然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
consumer通过yield拿到消息,处理,又通过yield把结果传回;
produce拿到consumer处理的结果,继续生产下一条消息;
produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
三、async关键字
1)表明程序里面可能有异步过程: async关键字表明程序里面可能有异步过程,里面可以有await关键字;当然全部是同步代码也没关系,但是这样async关键字就显得多余了;
2)非阻塞: async函数里面如果有异步过程会等待,但是async函数本身会马上返回,不会阻塞当前线程,可以简单认为,async函数工作在主线程,同步执行,不会阻塞界面渲染,async函数内部由await关键字修饰的异步过程,工作在相应的协程上,会阻塞等待异步任务的完成再返回;
3)async函数返回类型为Promise对象: 这是和普通函数本质上不同的地方,也是使用时重点注意的地方;
(1)return newPromise();这个符合async函数本意;
(2)return data;这个是同步函数的写法,这里是要特别注意的,这个时候,其实就相当于Promise.resolve(data);还是一个Promise对象,但是在调用async函数的地方通过简单的=是拿不到这个data的,因为返回值是一个Promise对象,所以需要用.then(data => { })函数才可以拿到这个data;
(3)如果没有返回值,相当于返回了Promise.resolve(undefined);
4)无等待 联想到Promise的特点,在没有await的情况下执行async函数,它会立即执行,返回一个Promise对象,并且绝对不会阻塞后面的语句,这和普通返回Promise对象的函数并无二致;
5)await不处理异步error: await是不管异步过程的reject(error)消息的,async函数返回的这个Promise对象的catch函数负责统一抓取内部所有异步过程的错误;async函数内部只要有一个异步过程发生错误,整个执行过程就中断,这个返回的Promise对象的catch就能抓取到这个错误;
5)async函数的执行: async函数执行和普通函数一样,函数名带个()就可以了,参数个数随意,没有限制,也需要有async关键字;只是返回值是一个Promise对象,可以用then函数得到返回值,用catch抓整个流程中发生的错误;
async function testAsync() { return "hello async"; } const result = testAsync(); // 返回一个Promise对象 console.log(result); // async函数返回的是一个Promise对象,async函数(包括函数语句、函数表达式、Lambda表达式)会返回一个Promise对象,如果在函数中return一个直接量,async会把这个直接量通过Promise.resolve() 封装成 Promise 对象; // async函数返回的是一个Promise对象,所以在最外层不能用await获取其返回值的情况,应该使用原始的方式:then()链来处理这个Promise对象 testAsync().then(v => { console.log(v); // 输出 hello async });
四、await关键字
1)await只能在async函数内部使用:不能放在普通函数里面,否则会报错;
2)await关键字后面跟Promise对象:在Pending状态时,相应的协程会交出控制权,进入等待状态,这是协程的本质;
3)await是async wait的意思: wait的是resolve(data)的消息,并把数据data返回,比如下面代码中,当Promise对象由Pending变为Resolved的时候,变量a就等于data,然后再顺序执行下面的语句console.log(a),这真的是等待,真的是顺序执行,表现和同步代码几乎一模一样;
const a = await new Promise((resolve, reject) => { // async process ... return resolve(data); }); console.log(a);
4)await后面也可以跟同步代码: 不过系统会自动将其转化成一个Promsie对象,比如:
const a = await 'hello world' // 相当于 const a = await Promise.resolve('hello world'); // 跟同步代码是一样的,还不如省事点,直接去掉await关键字 const a = 'hello world';
(1)让await后面的Promise对象自己catch;
(2)也可以让外面的async函数返回的Promise对象统一catch;
(3)像同步代码一样,放在一个try...catch结构中;
async componentDidMount() { // 这是React Native的回调函数,加个async关键字,没有任何影响,但是可以用await关键字 // 将异步和同步的代码放在一个try..catch中,异常都能抓到 try { let array = null; let data = await asyncFunction(); // 这里用await关键字,就能拿到结果值;否则,没有await的话,只能拿到Promise对象 if (array.length > 0) { // 这里会抛出异常,下面的catch也能抓到 array.push(data); } } catch (error) { alert(JSON.stringify(error)) } }
// 异步过程封装 function sleep(ms) { return new Promise((resolve) => { setTimeout(() => { resolve('sleep for ' + ms + ' ms'); }, ms); }); } // 定义异步流程,可以将按照需要定制,就像写同步代码那样 async function asyncFunction() { console.time('asyncFunction total executing:'); const sleep1 = await sleep(2000); console.log('sleep1: ' + sleep1); const [sleep2, sleep3, sleep4]= await Promise.all([sleep(2000), sleep(1000), sleep(1500)]); console.log('sleep2: ' + sleep2); console.log('sleep3: ' + sleep3); console.log('sleep4: ' + sleep4); const sleepRace = await Promise.race([sleep(3000), sleep(1000), sleep(1000)]); console.log('sleep race: ' + sleepRace); console.timeEnd('asyncFunction total executing:'); return 'asyncFunction done.' // 这个可以不返回,这里只是做个标记,为了显示流程 } // 像普通函数调用async函数,在then函数中获取整个流程的返回信息,在catch函数统一处理出错信息 asyncFunction().then(data => { console.log(data); // asyncFunction return 的内容在这里获取 }).catch(error => { console.log(error); // asyncFunction 的错误统一在这里抓取 }); console.log('after asyncFunction code executing....'); // 这个代表asyncFunction函数后的代码, // 显示asyncFunction本身会立即返回,不会阻塞主线程 // 执行结果 after asyncFunction code executing.... sleep1: sleep for 2000 ms sleep2: sleep for 2000 ms sleep3: sleep for 1000 ms sleep4: sleep for 1500 ms sleep race: sleep for 1000 ms asyncFunction total executing:: 5006.276123046875ms asyncFunction done.
代码分析
-
after asyncFunction code executing....代码位置在async函数asyncFunction()调用之后,反而先输出,这说明async函数asyncFunction()调用之后会马上返回,不会阻塞主线程;
-
sleep1: sleep for 2000 ms这是第一个await之后的第一个异步过程,最先执行,也最先完成,说明后面的代码,不论是同步和异步,都在等他执行完毕;
-
sleep2 ~ sleep4这是第二个await之后的Promise.all()异步过程,这是“比慢模式”,三个sleep都完成后,再运行下面的代码,耗时最长的是2000ms;
-
sleep race: sleep for 1000 ms这是第三个await之后的Promise.race()异步过程,这是“比快模式”,耗时最短sleep都完成后,就运行下面的代码,耗时最短的是1000ms;
-
asyncFunction total executing:: 5006.276123046875ms这是最后的统计总共运行时间代码,三个await之后的异步过程之和:
1000(独立的) + 2000(Promise.all) + 1000(Promise.race) = 5000ms
这个和统计出来的5006.276123046875ms非常接近,说明上面的异步过程,和同步代码执行过程一致,协程真的是在等待异步过程执行完毕; -
asyncFunction done.这个是async函数返回的信息,在执行时的then函数中获得,说明整个流程完毕之后参数传递的过程;
/** * 传入参数 n,表示这个函数执行的时间(毫秒) * 执行的结果是 n + 200,这个值将用于下一步骤 */ function takeLongTime(n) { return new Promise(resolve => { setTimeout(() => resolve(n + 200), n); }); } function step1(n) { console.log(`step1 with ${n}`); return takeLongTime(n); } function step2(n) { console.log(`step2 with ${n}`); return takeLongTime(n); } function step3(n) { console.log(`step3 with ${n}`); return takeLongTime(n); } // Promise方式调用 function doIt() { console.time("doIt"); const time1 = 300; step1(time1) .then(time2 => step2(time2)) .then(time3 => step3(time3)) .then(result => { console.log(`result is ${result}`); console.timeEnd("doIt"); }); } doIt(); // c:\var\test>node --harmony_async_await . // step1 with 300 // step2 with 500 // step3 with 700 // result is 900 // doIt: 1507.251ms // async/await方式调用 async function doIt() { console.time("doIt"); const time1 = 300; const time2 = await step1(time1); const time3 = await step2(time2); const result = await step3(time3); console.log(`result is ${result}`); console.timeEnd("doIt"); } doIt();
七、套路分析三
function step1(n) { console.log(`step1 with ${n}`); return takeLongTime(n); } function step2(m, n) { console.log(`step2 with ${m} and ${n}`); return takeLongTime(m + n); } function step3(k, m, n) { console.log(`step3 with ${k}, ${m} and ${n}`); return takeLongTime(k + m + n); } // Promise方式调用 function doIt() { console.time("doIt"); const time1 = 300; step1(time1) .then(time2 => { return step2(time1, time2) .then(time3 => [time1, time2, time3]); }) .then(times => { const [time1, time2, time3] = times; return step3(time1, time2, time3); }) .then(result => { console.log(`result is ${result}`); console.timeEnd("doIt"); }); } doIt(); // async/await方式调用 async function doIt() { console.time("doIt"); const time1 = 300; const time2 = await step1(time1); const time3 = await step2(time1, time2); const result = await step3(time1, time2, time3); console.log(`result is ${result}`); console.timeEnd("doIt"); } doIt(); // c:\var\test>node --harmony_async_await . // step1 with 300 // step2 with 800 = 300 + 500 // step3 with 1800 = 300 + 500 + 1000 // result is 2000 // doIt: 2907.387ms