poj2955括号匹配 区间DP
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5424 | Accepted: 2909 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6
4
0
#include<set> #include<map> #include<queue> #include<stack> #include<cmath> #include<string> #include<time.h> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define INF 1000000001 #define ll long long #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 using namespace std; const int MAXN = 110; int dp[MAXN][MAXN]; char s[MAXN]; int ok(char k1,char k2) { if(k1 == '(' && k2 == ')') return 1; if(k1 == '[' && k2 == ']') return 1; return 0; } int main() { while(~scanf("%s",s+1)){ if(s[1] == 'e')break; int len = strlen(s+1); int ans = 0; memset(dp,0,sizeof(dp)); for(int i = 2; i <= len; i++){ for(int j = 1; j <= len - i + 1; j++){ if(i == 2 && ok(s[j],s[j+i-1])){ dp[j][i] = 1; } else if(i > 2){ int p = 0; for(int k = 0; k <= i - 2; k++){ p = max(p,dp[j+1][k]+dp[j+k+1][i-k-2]); //cout<<i<<endl; //cout<<dp[j+1][k]<<' '<<j+1<<' '<<k<<' '<<endl; //cout<<dp[j+k+1][i-k-1]<<' '<<j+k+1<<' '<<i-k-1<<' '<<endl; } if(ok(s[j],s[j+i-1])){ p++; } dp[j][i] = max(p,dp[j][i]); for(int k = 0; k <= i; k++){ dp[j][i] = max(dp[j][i],dp[j][k]+dp[j+k][i-k]); } } } } printf("%d\n",dp[1][len] * 2); } return 0; }