Argo之argo rollout

Argo rollout

argo项目的子项目,配合argocd使用,完成k8s高级部署功能,包括:

  • 蓝绿部署
  • 金丝雀、金丝雀分析
  • 渐进式交付

应用编排控制器,可用于取代deployment控制器

支持ingress控制器(ngx、alb)和服务网格(istio、linkerd、smi)集成,利用他们的流量治理实现流量迁移过程,并且可以查询和解释来自指标系统(普罗米修斯、k8s-job、web、datadog)的指标来验证蓝绿、金丝雀的部署结果,并根据结果自动决定进行升级和回滚

工作机制: 与deployment类似,rollout控制器借助rs控制器完成应用的创建、缩放、删除。rs资源定义在Rollout的spec.template字段

crd资源

  • Rollout
  • AnalysisTemplate
  • ClusterAnalysisTemplate
  • AnalysisRun

架构

image-20240107194454552

由以下内容组成

  • Argo rollout controller
  • rollout crd
  • replicaSet
  • ingress/service
  • analysisTemplate/analysisRun
  • metric providers
  • cli/gui

配置

rollout资源

简写:ro

命令

kubectl-argo-rollouts get rollout ro-spring-boot-hello --watch
kubectl-argo-rollouts set image ro-spring-boot-hello spring-boot-hello=ikubernetes/spring-boot-helloworld:v0.9.5
kubectl-argo-rollouts promote ro-spring-boot-hello

语法

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
spec:
  analysis:
    successfulRunHistoryLimit: int
    unsuccessfulRunHistoryLimit: int
  minReadySeconds: int
  paused: boolean
  progressDeadlineAbort: boolean
  progressDeadlineSeconds: int
  replicas: int         #副本数
  restartAt: str
  revisionHistoryLimit: int         #运行配置暴露的历史版本数
  rollbackWindow:
    revisions: int
  selector:             #标签选择器
    matchExpressions:
    - key: str
      operator: str
      values: [str]
    matchLabels: {}
  strategy:             #发布策略
    blueGreen:          #蓝绿部署相关
      abortScaleDownDelaySeconds: int
      activeMetadata:
        annotations: {}
        labels: {}
      activeService: str        #当前活动状态的服务,也就是即将更新的服务
      antiAffinity:
        preferredDuringSchedulingIgnoredDuringExecution:
          weight: int
        requiredDuringSchedulingIgnoredDuringExecution:
      autoPromotionEnabled: boolean     #自动进行promote流量迁移,蓝绿发布下,新、旧pod都启动后,默认自动将浏览切到新pod,而旧pod在30s后自动删除
      autoPromotionSeconds: int     #在指定时间后执行promote
      maxUnavailable:       #更新期间最多允许处于不可用状态的pod数量或百分比
      postPromotionAnalysis:      #promote流量迁移操作后运行的分析,若分析运行失败或出错,则ro进入中止状态并将流量切换回之前的稳定pod。调用at模板,并为其赋值等
        analysisRunMetadata:
        args:
        - name: str
          value: str
          valueFrom:
            fieldRef:
              fieldPath: str
            podTemplateHashValue: str
        dryRun:
        - metricName: str
        measurementRetention:
        - metricName: str
          limit: int
        templates:
        - templateName: str
          clusterScope: boolean
      prePromotionAnalysis:       #promote操作前要运行的分析,分析的结果决定了ro进行流量切换还是中止更新。配置选项参考spec.strategy.blueGreen.postPromotionAnalysis
      previewMetadata:      #更新期间添加到预览版pod上的元数据
        annotations: {}
        labels: {}
      previewReplicaCount: int      #预览版的pod数,默认和稳定版同步,为100%
      previewService: str       #预览版的服务,也是要更新的目标服务版本
      scaleDownDelayRevisionLimit: int
      scaleDownDelaySeconds: int
    canary:           #金丝雀发布相关
      abortScaleDownDelaySeconds: int     #启用流量路由时,因为更新中止而收缩金丝雀版本pod数量之前的延迟时间,默认30s
      analysis:         #滚动更新期间与后台运行的分析,可选。其余部分配置选项参考spec.strategy.blueGreen.postPromotionAnalysis
        startingStep: int       #从steps定义的步骤中,第几步开始进行分析指标数据,期间1次不达标就回滚
        ...
      antiAffinity:     #金丝雀pod和副本pod之间的反亲和关系。配置选项参考spec.strategy.blueGreen.antiAffinity
      canaryMetadata:   #需要添加到金丝雀版本的pod中的元数据,仅存在与金丝雀更新期间,更新完成后就是稳定版
        annotations: {}
        labels: {}
      canaryService: str      #由控制器来匹配到金丝雀pod上的svc,流量路由依赖此选项
      dynamicStableScale: boolean
      maxSurge:
      maxUnavailable:
      minPodsPerReplicaSet: int
      pingPong:
        pingService: str
        pongService: str
      scaleDownDelayRevisionLimit: int    #在旧rs上启动缩容前,可运行的旧rs数量
      scaleDownDelaySeconds: int      #启用流量路由时,缩容前1个rs副本规模的延迟时间,默认30s
      stableMetadata:       #需要添加到稳定版上的pod的元数据
        annotations: {}
        labels: {}
      stableService: str      #由控制器来匹配稳定版pod上的svc,流量路由依赖此选项
      steps:          #更新期间要执行的步骤,可选
      - analysis:   #配置选项参考spec.strategy.blueGreen.postPromotionAnalysis
      - experiment:
          analyses:
          - name: str
            args:
            - name: str
              value: str
              valueFrom:
                fieldRef:
                  fieldPath: str
                podTemplateHashValue: str
            clusterScope: boolean
            requiredForCompletion: boolean
            templateName: str
          duration: str
          templates:
          - name: str
            metadata:
              annotations: {}
              labels: {}
            selector:
              matchExpressions:
              matchLabels: {}
            replicas: int
            service:
              name: str
            specRef: str
            weight: int
      - pause:          #暂停发布过程
          duration:     #指定暂停时间,金丝雀中转移部分流量后自动暂停,而后选择自动流量迁移还是手动进行
      - setCanaryScale:     #配置金丝雀扩容期间pod扩容与流量扩增的对应关系
          matchTrafficWeight: boolean   #默认true,流量比例、pod比例与权重比例相同,如:权重配置为10,金丝雀发布时,共10个pod,新起1个金丝雀po接入10%流量,其余90%由原来旧的接入。若5个pod的权重为10%,则不满1个po就启动1个po(保证最少启动1个)
          replicas: int     #指定金丝雀pod数量(不改变先前指定的流量比例)
          weight: int       #指定启动金丝雀pod与稳定版pod比例(不改变先前指定的流量比例)
      - setHeaderRoute:
          name: str
          match:
          - headerName: str
            headerValue:
              exact: str
              prefix: str
              regex: str
      - setMirrorRoute:
          name: str
          match:
          - headers: {}
            method:
              exact: str
              prefix: str
              regex: str
            path:
              exact: str
              prefix: str
              regex: str
          percentage: int
      - setWeight: int      #设置金丝雀版本rs激活pod的比率,以及调度到金丝雀版本的流量比例
      trafficRouting:         #配置ingress控制器或服务网格做流量分割、迁移,根据具体使用的内容配置
        managedRoutes:
        - name: str
        alb:
        ambassador:
        apisix:
        appMesh:
        istio:		#istio配置流量迁移
          destinationRule:
            name: str
            canarySubsetName: str
            stableSubsetName: str
          virtualService:
            name: str
            routes: [str]
            tcpRoutes:
            - port: int
            tlsRoutes:
            - port: int
              sniHosts: [str]
          virtualServices:
          - name: str
            routes: [str]
            tcpRoutes:
            - port: int
            tlsRoutes:		#指定vs上要动态调整的tls路由条目列表
            - port: int
              sniHosts: [str]	
        nginx:
          additionalIngressAnnotations: {}
          annotationPrefix: str
          stableIngress: str
          stableIngresses: [str]	#要调整的stable版ingress名称
        plugins:
        smi:
        traefik:
  template:           #pod模板
    metadata:
    spec:
  workloadRef:
    apiVersion: str
    kind: str
    name: str

示例

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: ro-spring-boot-hello
spec:
  replicas: 10
  strategy:
    canary:
      steps:
      - setWeight: 10       #流量与pod启动数为10%
      - pause: {}           #完成后永久暂停,等待用户手动进行下一步
      - setWeight: 20       #流量与pod启动数加大为20%
      - pause:          #完成后,暂停20秒后再执行下一个步骤
          duration: 20
      - setWeight: 30
      - pause:
          duration: 20
      - setWeight: 40
      - pause:
          duration: 20
      - setWeight: 60
      - pause:
          duration: 20
      - setWeight: 80     #一直到流量与pod启动数为80%
      - pause:          #再暂停20秒后,后续没有其他定义则完成所有流量迁移与pod启动,也就是100%
          duration: 20
  revisionHistoryLimit: 5     #保留5个历史版本
  selector:
    matchLabels:
      app: spring-boot-hello
  template:
    metadata:
      labels:
        app: spring-boot-hello
    spec:
      containers:
      - name: spring-boot-hello
        image: ikubernetes/spring-boot-helloworld:v0.9.2
        ports:
        - name: http
          containerPort: 80
          protocol: TCP
        resources:
          requests:
            memory: 32Mi
            cpu: 50m
        livenessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 3
        readinessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 5

AnalysisTemplate资源

简写:at

argo rollout中用于分析、测量结果来推动渐进式交付
分析机制通过分析模板定义,然后在ro中调用它
运行特定的交付过程时,ro会将调用的at实例化为AnalysisRun资源

image-20240107221625065

场景

如果金丝雀发布时,定义了分析模板,设置请求的健康指标比率,2xx响应码比率占总请求的95%,则表示服务运行正常,可继续部署,否则进行回滚,其中剩余的5%中可指定4xx、5xx响应码占比小于多少

语法

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
spec:
  args:         #模板参数,变量引用格式为:{{ args.变量 }}
  - name: str     #变量名
    value: str
    valueFrom:    #从文件、pod模板中获取值
      fieldRef:
        fieldPath: str
      podTemplateHashValue: str
  dryRun:       #允许dryrun模式的指标列表,这些指标的结果不会影响最终分析结果
  - metricName: str
  measurementRetention:     #测量结果的历史保留数,dryrun模式的参数也支持历史保留
  - metricName: str       #指标名
    limit: int        #保留数
  metrics:      #必选字段,定义用于交付效果进行分析的指标
  - name: str     #指标名称
    provider:     #指标提供者,根据使用的自行定义
      cloudWatch:
      datadog:
      graphite:
      influxdb:
      job:
      kayenta:
      newRelic:
      plugin:
      prometheus:
        address: str      #普罗米修斯的地址
        authentication:
          sigv4:
            profile: str
            region: str
            roleArn: str
        headers:
        - key: str
          value: str
        insecure: boolean   #不验证ssl
        query: str        #promQL语句
        timeout: int      #超时时间
      skywalking:
        address: str
        interval: str
        query: str
      wavefront:
      web:
    consecutiveErrorLimit:
    count:        #总测试的次数
    failureCondition: str       #错误条件表达式,与successCondition相反
    failureLimit:
    inconclusiveLimit:
    initialDelay: str
    interval: str         #每次查询的间隔
    successCondition: 表达式     #测试结果为成功的条件表达式,在无用户请求或无数据时会出现“slice index out of range”错误,推荐结果是int类型的使用此表达式: len(result) == 0 || 实际表达式。字符串或无穷大的值使用:isNaN(result) || 实际表达式
        #表达式支持与或、default(result,默认值)函数、
        #使用普罗米修斯分析,使用:result[0]获取结果,结合推荐格式的就是:len(result) == 0 || result[0] > 1234

示例

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: success-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: success-rate
    successCondition: len(result) == 0 || result[0] >= 0.95     #获取普罗米修斯的结果,最判断,普罗米修斯结果取值格式:result[0]
    interval: 20s
    count: 3
    failureLimit: 3
    provider:
      prometheus:
        address: http://prometheus.istio-system.svc.cluster.local:9090
        #过去1分钟内,除了5xx以外的请求占总请求比例(成功率)
        query: |
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.service-name}}",response_code!~"5.*"}[1m]
          )) /
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.service-name}}"}[1m]
          ))

案例

演示代码仓库可以克隆到自己本地gitlab中,方便操作

代码仓库:https://gitee.com/mageedu/spring-boot-helloWorld.git
配置仓库:https://gitee.com/mageedu/spring-boot-helloworld-deployment.git

例1:运行demo,普通金丝雀模式运行(无ingress或网格)

1)创建ro资源

kubectl apply -f - <<eof
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: ro-spring-boot-hello
spec:
  replicas: 5
  strategy:
    canary:
      steps:
      - setWeight: 10       #流量与pod启动数为10%
      - pause: {}           #完成后永久暂停,等待用户手动进行下一步
      - setWeight: 20       #流量与pod启动数加大为20%
      - pause:          #完成后,暂停20秒后再执行下一个步骤
          duration: 20
      - setWeight: 30
      - pause:
          duration: 20
      - setWeight: 40
      - pause:
          duration: 20
      - setWeight: 60
      - pause:
          duration: 20
      - setWeight: 80     #一直到流量与pod启动数为80%
      - pause:          #再暂停20秒后,后续没有其他定义则完成所有流量迁移与pod启动,也就是100%
          duration: 20
  revisionHistoryLimit: 5     #保留5个历史版本
  selector:
    matchLabels:
      app: spring-boot-hello
  template:
    metadata:
      labels:
        app: spring-boot-hello
    spec:
      containers:
      - name: spring-boot-hello
        image: ikubernetes/spring-boot-helloworld:v0.9.2
        ports:
        - name: http
          containerPort: 80
          protocol: TCP
        resources:
          requests:
            memory: 32Mi
            cpu: 50m
        livenessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 3
        readinessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: spring-boot-hello
spec:
  ports:
  - port: 80
    targetPort: http
    protocol: TCP
    name: http
  selector:
    app: spring-boot-hello
eof

2)监测pod状态

kubectl-argo-rollouts get rollout ro-spring-boot-hello --watch

由于刚运行,还处于启动状态,revision也是第一个版本image-20240107205305310

3)更新镜像,再继续监测

kubectl-argo-rollouts set image ro-spring-boot-hello spring-boot-hello=ikubernetes/spring-boot-helloworld:v0.9.5

总共12个迁移步骤,能看到新镜像名,已经更新了一个pod
revision为1表示第一个版本,2表示第二个版本(新版本/金丝雀)image-20240107203435780

图形界面查看image-20240107204014192

4)手动执行流量迁移后,再继续监测

kubectl-argo-rollouts promote ro-spring-boot-hello

等待20s后,继续迁移了流量image-20240107205840221

例2:结合istio进行金丝雀流量迁移

istio支持2种流量分割:

  • 基于host实现,2个svc对应2个版本,一个svc对应一个host
  • 基于subset实现,做集群子集,参考istio、envoy配置

本例以subset为例, 在金丝雀发布期间,vs的动态调整可能会导致,gitops自动化部署出现问题:权重的瞬时摆动

解决方案:

如果结合app资源部署时,应该在app.spec.ignoreDifferences字段中,忽略vs的路由,具体json路径为:/spec/http/0

1)开启istio注入

kubectl label ns default istio-injection=enabled

2)创建ro、svc、vs、dr

kubectl apply -f - <<eof
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: ro-spring-boot-hello
spec:
  replicas: 5
  strategy:
    canary:
      trafficRouting:
        istio:
          virtualService:     #配置vs
            name: hello-ro-vs   #使用此vs
            routes:       #hello-ro-vs的路由配置
            - primary
          destinationRule:    #dr配置
            name: hello-ro-dr
            canarySubsetName: canary    #金丝雀使用此
            stableSubsetName: stable    #稳定版使用此
      steps:
      - setCanaryScale:
          matchTrafficWeight: true
      - setWeight: 5
      - pause: {duration: 1m}
      - setWeight: 10
      - pause: {duration: 1m}
      - setWeight: 20
      - pause: {duration: 20}
      - setWeight: 20
      - pause: {duration: 40}
      - setWeight: 40
      - pause: {duration: 20}
      - setWeight: 60
      - pause: {duration: 20}
      - setWeight: 80
      - pause: {duration: 20}
  revisionHistoryLimit: 5
  selector:
    matchLabels:
      app: spring-boot-hello
  template:
    metadata:
      labels:
        app: spring-boot-hello
    spec:
      containers:
      - name: spring-boot-hello
        image: ikubernetes/spring-boot-helloworld:v0.9.2
        ports:
        - name: http
          containerPort: 80
          protocol: TCP
        resources:
          requests:
            memory: 32Mi
            cpu: 50m
        livenessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 3
        readinessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: spring-boot-hello
spec:
  ports:
  - port: 80
    targetPort: http
    protocol: TCP
    name: http
  selector:
    app: spring-boot-hello
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: hello-ro-vs
spec:
  #gateways:
  #- istio-rollout-gateway
  hosts:
  - spring-boot-hello
  http:
  - name: primary       #对应ro中:spec.strategy.canary.trafficRouting.istio.virtualService.routes的名称
    route:
    - destination:
        host: spring-boot-hello
        subset: stable  #对应ro中:spec.strategy.canary.trafficRouting.istio.destinationRule.stableSubsetName的名称
      weight: 100
    - destination:
        host: spring-boot-hello
        subset: canary  #对应ro中:spec.strategy.canary.trafficRouting.istio.destinationRule.canarySubsetName的名称
      weight: 0
---
apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
  name: hello-ro-dr
spec:
  host: spring-boot-hello
  subsets:
  - name: canary
    labels:
      app: spring-boot-hello
  - name: stable
    labels:
      app: spring-boot-hello
eof

3)监测ro信息

kubectl-argo-rollouts get rollout ro-spring-boot-hello --watch

4)更新镜像,再继续监测

kubectl-argo-rollouts set image ro-spring-boot-hello spring-boot-hello=ikubernetes/spring-boot-helloworld:v0.9.5

5)查看vs的流量比率变动

watch -n .1 'kubectl describe vs hello-ro-vs'

图形化中,看到结果,更新5%(为确保最少1个更新,所以更新了一个pod)image-20240107221006942

vs的流量权重image-20240107221023944

过一会再看,转移20%流量了image-20240107221219015

image-20240107221219014

例3:结合istio,并从普罗米修斯分析数据,完成金丝雀发布

1)部署普罗米修斯

我这里直接使用istio附带的清单部署了

kubectl apply -f samples/addons/prometheus.yaml

2)配置清单

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: success-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: success-rate
    successCondition: len(result) == 0 || result[0] >= 0.95     #获取普罗米修斯的结果,最判断,普罗米修斯结果取值格式:result[0]
    interval: 20s
    count: 3
    failureLimit: 3
    provider:
      prometheus:
        address: http://prometheus.istio-system.svc.cluster.local:9090
        #过去1分钟内,除了5xx以外的请求占总请求比例(成功率)
        query: |
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.service-name}}",response_code!~"5.*"}[1m]
          )) /
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.service-name}}"}[1m]
          ))
---
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: ro-spring-boot-hello
spec:
  replicas: 5
  strategy:
    canary:
      trafficRouting:
        istio:
          virtualService:
            name: hello-ro-vs
            routes:
            - primary
          destinationRule:
            name: hello-ro-dr
            canarySubsetName: canary
            stableSubsetName: stable
      analysis:
        templates:
        - templateName: success-rate
        args:
        - name: service-name
          value: spring-boot-hello.default.svc.cluster.local
        startingStep: 2		#启动2个步骤后再分析流量
      steps:
      - setWeight: 5
      - pause: {duration: 1m}
      - setWeight: 10
      - pause: {duration: 1m}
      - setWeight: 20
      - pause: {duration: 20}
      - setWeight: 20
      - pause: {duration: 40}
      - setWeight: 40
      - pause: {duration: 20}
      - setWeight: 60
      - pause: {duration: 20}
      - setWeight: 80
      - pause: {duration: 20}
  revisionHistoryLimit: 5
  selector:
    matchLabels:
      app: spring-boot-hello
  template:
    metadata:
      labels:
        app: spring-boot-hello
    spec:
      containers:
      - name: spring-boot-hello
        image: ikubernetes/spring-boot-helloworld:v0.9.2
        ports:
        - name: http
          containerPort: 80
          protocol: TCP
        resources:
          requests:
            memory: 32Mi
            cpu: 50m
        livenessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 3
        readinessProbe:
          httpGet:
            path: '/'
            port: 80
            scheme: HTTP
          initialDelaySeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: spring-boot-hello
spec:
  ports:
  - port: 80
    targetPort: http
    protocol: TCP
    name: http
  selector:
    app: spring-boot-hello
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: hello-ro-vs
spec:
  #gateways:
  #- istio-rollout-gateway
  hosts:
  - spring-boot-hello
  http:
  - name: primary
    route:
    - destination:
        host: spring-boot-hello
        subset: stable
      weight: 100
    - destination:
        host: spring-boot-hello
        subset: canary
      weight: 0
---
apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
  name: hello-ro-dr
spec:
  host: spring-boot-hello
  subsets:
  - name: canary
    labels:
      app: spring-boot-hello
  - name: stable
    labels:
      app: spring-boot-hello

2)监测

kubectl-argo-rollouts get rollout ro-spring-boot-hello --watch

3)更新

kubectl-argo-rollouts set image ro-spring-boot-hello spring-boot-hello=ikubernetes/spring-boot-helloworld:v0.9.5

4)测试

kubectl exec -it admin -- sh
sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/g' /etc/apk/repositories ;apk add curl
while :;do curl spring-boot-hello ;sleep .5;done

流量分析成功image-20240107225544713

例4:结合普罗米修斯分析流量,完成蓝绿部署

由于蓝绿是直接切换流量到新集群,所以不需要流量策略,也就不需要用ingress这些

1)清单

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: success-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: success-rate
    successCondition: len(result) == 0 || result[0] >= 0.95
    interval: 10s
    count: 3
    failureLimit: 2
    provider:
      prometheus:
        address: http://prometheus.istio-system.svc.cluster.local:9090
        query: |
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.service-name}}",response_code!~"5.*"}[1m]
          )) /
          sum(irate(
            istio_requests_total{reporter="source",destination_service=~"{{args.service-name}}"}[1m]
          ))
---
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: rollout-helloworld-bluegreen-with-analysis
spec:
  replicas: 3
  revisionHistoryLimit: 5
  selector:
    matchLabels:
      app: rollout-helloworld-bluegreen
  template:
    metadata:
      labels:
        app: rollout-helloworld-bluegreen
    spec:
      containers:
      - name: spring-boot-helloworld
        image: ikubernetes/spring-boot-helloworld:v0.9.2
        ports:
        - containerPort: 80
  strategy:
    blueGreen:
      activeService: spring-boot-helloworld
      previewService: spring-boot-helloworld-preview
      prePromotionAnalysis:		#切换前做分析
        templates:
        - templateName: success-rate
        args:
        - name: service-name
          value: spring-boot-helloworld-preview.default.svc.cluster.local
      postPromotionAnalysis:	#切换后做分析
        templates:
        - templateName: success-rate
        args:
        - name: service-name
          value: spring-boot-helloworld.default.svc.cluster.local
      autoPromotionEnabled: true
---
kind: Service
apiVersion: v1
metadata:
  name: spring-boot-helloworld
spec:
  selector:
    app: rollout-helloworld-bluegreen
  ports:
  - protocol: TCP
    port: 80
    targetPort: 80
---
kind: Service
apiVersion: v1
metadata:
  name: spring-boot-helloworld-preview
spec:
  selector:
    app: rollout-helloworld-bluegreen
  ports:
  - protocol: TCP
    port: 80
    targetPort: 80

2)更新

kubectl-argo-rollouts set image rollout-helloworld-bluegreen-with-analysis spring-boot-helloworld=ikubernetes/spring-boot-helloworld:v0.9.5

3)监测

kubectl-argo-rollouts get rollout rollout-helloworld-bluegreen-with-analysis --watch

2个流量分析成功,然后流量转移image-20240107232004203

image-20240107231940975

例5:argocd与argo-rollout实现gitops

1)创建app资源,监视git配置仓库

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
  name: spring-boot-helloworld
  namespace: argocd
spec:
  project: default
  source:
    repoURL: http://2.2.2.15:80/root/spring-boot-helloworld-deployment.git
    targetRevision: HEAD
    path: rollouts/helloworld-canary-with-analysis
  destination:
    server: https://kubernetes.default.svc
    # This sample must run in demo namespace.
    namespace: demo
  syncPolicy:
    automated: 
      prune: true
      selfHeal: true
      allowEmpty: false
    syncOptions:
    - Validate=false
    - CreateNamespace=true
    - PrunePropagationPolicy=foreground
    - PruneLast=true
    - ApplyOutOfSyncOnly=true
    retry:
      limit: 5
      backoff:
        duration: 5s
        factor: 2
        maxDuration: 3m
  ignoreDifferences:
  - group: networking.istio.io
    kind: VirtualService
    jsonPointers:
    - /spec/http/0

2)查看运行结果

#查看app运行结果
argocd app get argocd/spring-boot-helloworld

#查看rollout的版本控制结果
kubectl-argo-rollouts get rollout -n demo rollouts-helloworld-with-analysis

创建完成后,查看argocd图形界面,看运行结果

image-20240108150319124

命令行查看,也能看到配置仓库中定义的各资源已经运行成功image-20240108150637767

argo-rollout图形界面也能看到运行结果image-20240108151133713

image-20240108150939128

3)调整配置仓库,更新配置

打开gitlab,进入到配置仓库中,调整配置文件的镜像版本,模拟版本更新
image-20240108151315263

修改镜像名,然后提交image-20240108151504531

4)查看版本发布过程

这里点手动同步配置仓库状态(不手动点刷新,过一段时间后也会自动刷新),此时获取到配置仓库的配置清单有变更,已经与集群中运行的pod状态有了变化,所以开始更新状态(执行配置仓库的新文件)image-20240108152009594

argo-rollout可以看到新版本开始部署,并且开始迁移部分流量,当前已经转移了5%流量比例到金丝雀版本image-20240108151839382

此时已经做完了金丝雀流量状态分析,且分析成功了,所以开始继续部署金丝雀版本,继续迁移流量image-20240108152045888

到最后,所有新pod部署完成,镜像版本为最新,流量也迁移完成
image-20240108152459505

例6:tekton与argocd实现gitops

tekton用于替代jenkins

tekton与argocd完成CI/CD,argo-rollout结合istio、prometheus完成流量自动迁移,流量健康分析后自动发布与回滚

可以完全做到业务发布无人值守,自动根据请求的指标是否正常,完成发布与回滚

参考发布在稀土掘金上的内容:tekton与argocd实现gitops

posted @ 2024-01-08 15:50  suyanhj  阅读(100)  评论(0编辑  收藏  举报