PTA (Advanced Level) 1002 A+B for Polynomials
1002 A+B for Polynomials
This time, you are supposed to find A+B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K N1 aN1 N2 aN2 ... NK aNK
where K is the number of nonzero terms in the polynomial, Ni and aNi (,) are the exponents and coefficients, respectively. It is given that 1,0.
Output Specification:
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
3 2 1.5 1 2.9 0 3.2
题目解析
本题给出两个多项式,每个多项式按照 项数K 指数N1 系数aN1 指数N2 系数aN2 …… 指数NK 系数aNK 的方式给出,要求计算两个多项式的和。
用一个double型ans来记录两个多项式的和 (下标为指数,下标对应的和为系数),每输入一组指数与系数,就将系数加入ans中对应项中去。在输入数据时应记录输入的最大指数与最小指数。
遍历ans由最小指数到最大指数,获取系数不为0的项数记为cnt,cnt便是两个多项式的和的项数。
出数cnt,由最大指数到最小指数遍历并输出每一个系数不为0的项即可。
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int MAX= 1e5+10; 4 double ans[MAX]; 5 int main() 6 { 7 int n; 8 scanf("%d", &n); //输入多项式A的项数 9 int maxe = INT_MIN, mine = INT_MAX; 10 //maxe保存最大指数 mine保存最小指数 11 for(int i = 0; i < n; i++){ //输入多项式a 12 int ea; //指数 13 double temp; //系数 14 scanf("%d", &ea); 15 scanf("%lf", &temp); 16 ans[ea] += temp; //系数加入ans中对应项 17 maxe = max(maxe, ea); //记录最大指数 18 mine = min(mine, ea); //记录最小指数 19 } 20 scanf("%d", &n); //输入多项式b 21 for(int i = 0; i < n; i++){ 22 int eb; //指数 23 double temp; //系数 24 scanf("%d", &eb); 25 scanf("%lf", &temp); 26 ans[eb] += temp; //系数加入ans中对应项 27 maxe = max(maxe, eb); //记录最大指数 28 mine = min(mine, eb); //记录最小指数 29 } 30 int cnt = 0; 31 //cnt记录A+B的项数 32 for(int i = mine; i <= maxe; i++){ //由最小指数到最大指数遍历ans 33 if(ans[i] != 0.0) //若某项系数不为0则项数加1 34 cnt++; 35 } 36 printf("%d", cnt); //输出cnt 37 for(int i = maxe; i >= mine; i--){ //由最大指数到最小指数遍历并输出每一个系数不为0的项 38 if(ans[i] != 0.0) 39 printf(" %d %.1f", i, ans[i]); 40 } 41 printf("\n"); 42 return 0; 43 }