OpenCV笔记
Linux上Opencv的安装
如果没有安装 OpenCV:
从 https://opencv.org/releases/ 下载opencv-3.4.16.zip
sudo apt update
sudo apt install -y cmake g++ wget unzip cmake build-essential \
libgtk2.0-dev libavcodec-dev libavformat-dev libswscale-dev libtbb2 \
libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev
sudo mkdir -p /opt/tools
cd opencv-3.4.16
mkdir release && cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/opt/tools/opencv-3.4.16 ..
make -j8
sudo make install
参考了:https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html
使用opencv读取、显示和写入图像
C++和Python代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
// 读取图像
Mat img_grayscale = imread("../1.jpg",0);
// 显示图像
imshow("grayscale image", img_grayscale);
// 监听键盘,0为无限期等待击键
waitKey(0);
// 销毁创建的所有窗口
destroyAllWindows();
// 写入图片
imwrite("grayscale.jpg",img_grayscale);
return 0;
}
Python
# import the cv2 library
import cv2
# The function cv2.imread() is used to read an image.
img_grayscale = cv2.imread('test.jpg',0)
# The function cv2.imshow() is used to display an image in a window.
cv2.imshow('graycsale image',img_grayscale)
# waitKey() waits for a key press to close the window and 0 specifies indefinite loop
cv2.waitKey(0)
# cv2.destroyAllWindows() simply destroys all the windows we created.
cv2.destroyAllWindows()
# The function cv2.imwrite() is used to write an image.
cv2.imwrite('grayscale.jpg',img_grayscale)
1.imread() 读取图片
-
语法imread(filename, flags)
第一个参数: 图像名 第二个参数:[optional flag] cv2.IMREAD_UNCHANGED or -1 cv2.IMREAD_GRAYSCALE or 0 cv2.IMREAD_COLOR or 1 # 这个是默认值,读取图片作为彩色图片
-
注意
OpenCV读取出来的是BGR格式,但是其他cv库使用的是RGB格式(所以有时候需要转换格式) 例如: from matplotlib import pyplot as plt plt.axis("off") plt.imshow(cv2.cvtColor(img_color, cv2.COLOR_BGR2RGB)) plt.show()
2.imshow() 在窗口展示图片
-
imshow(window_name, image)
第一个参数是窗口名 第二个是需要展示的图片 要一次显示多个图像,请为要显示的每个图像指定一个新窗口名称。 该函数一般和waitKey(),destroyAllWindows() / destroyWindow()一起使用 waitKey()是键盘响应函数,它需要一个参数: 显示窗口的时间(单位毫秒),如果是0则无限期等待击键。 还可以设置该功能以检测键盘上的 Q 键或 ESC 键等特定击键,从而更明确地告诉哪个键应该触发哪个行为
-
案例
python
#Displays image inside a window cv2.imshow('color image',img_color) cv2.imshow('grayscale image',img_grayscale) cv2.imshow('unchanged image',img_unchanged) # Waits for a keystroke cv2.waitKey(0) # 0表示一直等待,也可以填具体时间单位是毫秒。可以通过返回值来判断是q or ESC # Destroys all the windows created cv2.destroyAllwindows()
c++
// Create a window. namedWindow( "color image", WINDOW_AUTOSIZE ); namedWindow( "grayscale image", WINDOW_AUTOSIZE ); namedWindow( "unchanged image", WINDOW_AUTOSIZE ); // Show the image inside it. imshow( "color image", img_color ); imshow( "grayscale image", img_grayscale ); imshow( "unchanged image", img_unchanged ); // Wait for a keystroke. waitKey(0); // Destroys all the windows created destroyAllWindows();
3.imwrite() 写文件到文件目录
-
imwrite(filename, image)
第一个参数是文件名,必须包括文件扩展名(.png, .jpg etc) 第二个参数是保存的图片,如果保存成功返回True
-
案例
python
cv2.imwrite('grayscale.jpg',img_grayscale)
c++
imwrite("grayscale.jpg", img_grayscale);
使用opencv读写视频
C++和Python读写视频代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
//cv2.VideoCapture– 创建一个视频捕获对象,这将有助于流式传输或显示视频。
//cv2.VideoWriter– 将输出视频保存到目录中。
//创建一个VideoCapture对象,然后我们将使用它来读取视频文件。
//将vid_capture("../1.mp4")变成vid_capture(0)则是获取摄像头
VideoCapture vid_capture("../1.mp4");
//判断是否正确打开视频文件
if(!vid_capture.isOpened())
{
cout<<"Error opening video stream or file"<<endl;
}
else
{
//get函数记录的选项枚举列表中获取单个参数。
//数值 5 和 7,它们对应于帧速率 (CAP_PROP_FPS) 和帧数 ( CAP_PROP_FRAME_COUNT)。可以提供数值或名称。
int fps = vid_capture.get(5);
cout<<"FPS: "<<fps<<endl;
//获取视频的总帧数
int frame_count = vid_capture.get(7);
cout<<"Frame count: "<<frame_count<<endl;
}
while(vid_capture.isOpened())
{
//Mat是一个图像类容器,n维数组
Mat frame;
//vid_capture.read()通过使用该方法创建循环并一次从视频流中读取一帧
bool isSuccess = vid_capture.read(frame);
if(isSuccess == true)
{
//显示当前帧
imshow("Video", frame);
}
if(isSuccess == false)
{
cout<<"Video camera is disconnected"<<endl;
break;
}
if(waitKey(20) == 'q')
{
cout<<"q key is pressed by the user. Stopping the video"<<endl;
break;
}
}
//释放视频资源
vid_capture.release();
//关闭窗口
destroyAllWindows();
return 0;
}
Python
import cv2
# Create a video capture object, in this case we are reading the video from a file
vid_capture = cv2.VideoCapture('Resources/Cars.mp4') # 创建一个视频捕捉对象,有助于流式传输或显示视频
if (vid_capture.isOpened() == False): # isOpened()方法判断视频文件是否打开正确
print("Error opening the video file")
# Read fps and frame count
else:
# Get frame rate information
# You can replace 5 with CAP_PROP_FPS as well, they are enumerations
fps = vid_capture.get(5) # get() 方法得到视频流的元数据,注意该方法不适合web cameras.# 5代表frame rate(帧率fps)
print('Frames per second : ', fps,'FPS')
# Get frame count
# You can replace 7 with CAP_PROP_FRAME_COUNT as well, they are enumerations
frame_count = vid_capture.get(7) # 7代表帧数(frame count)
print('Frame count : ', frame_count)
while(vid_capture.isOpened()):
# vid_capture.read() methods returns a tuple, first element is a bool
# and the second is frame
# 一帧一帧的读取
ret, frame = vid_capture.read() # read()放回元组,第一个是boolean[True表示视频流包含要读取的帧], 第二个是实际的视频帧
if ret == True:
cv2.imshow('Frame',frame)
# 20 is in milliseconds, try to increase the value, say 50 and observe
key = cv2.waitKey(20)
if key == ord('q'):
break
else:
break
# Release the video capture object
vid_capture.release() # 释放视频捕捉对象
cv2.destroyAllWindows() # 关闭所有窗口
1.读图片序列
python
vid_capture = cv2.VideoCapture('Resources/Image_sequence/Cars%04d.jpg')
c++
VideoCapture vid_capture("Resources/Image_sequence/Cars_%04d.jpg");
//%d左对齐,输出变量的所有数字;%4d右对齐,宽度为4,左边填充空格,当变量的实际宽度大于4时,输出变量的所有数字;%04d与%4d的唯一区别就是左边填充0。
//以%d,%4d,%04d,输出12时, 结果是:12,两个空格12, 0012。
//注意: 该数据的形式是: (Cars_01.jpg, Cars_02.jpg, Cars_03.jpg, etc…)
2.VideoWriter()写入视频
Python
import cv2
vid_capture = cv2.VideoCapture("video/test.mp4")
frame_width = int(vid_capture.get(3))
frame_height = int(vid_capture.get(4))
frame_size = (frame_width, frame_height)
output = cv2.VideoWriter("video/out_video.avi",
cv2.VideoWriter_fourcc('M','J','P','G'),
20,
frame_size
)
while(vid_capture.isOpened()):
ret, frame = vid_capture.read()
if ret == True:
output.write(frame)
else:
print("Stream disconnected")
break
vid_capture.release()
output.release()
- 前置知识: 获取视频帧的width和height
Python
# Obtain frame size information using get() method
frame_width = int(vid_capture.get(3))
frame_height = int(vid_capture.get(4))
frame_size = (frame_width,frame_height)
fps = 20
c++
// Obtain frame size information using get() method
Int frame_width = static_cast<int>(vid_capture.get(3));
int frame_height = static_cast<int>(vid_capture.get(4));
Size frame_size(frame_width, frame_height);
int fps = 20;
-
语法: VideoWriter(filename, apiPreference, fourcc, fps, frameSize[, isColor])
filename: 输出文件的路径 apiPreference: API后端标识符 fourcc: 编解码器的 4 字符代码,用于压缩帧 fps: 创建的视频流的帧率 fram_size: 视频帧的大小 isCOlor: 如果不为零,编码器将期望并编码彩色帧。 否则它将适用于灰度帧(该标志目前仅在 Windows 上受支持)
-
一个特殊的便利函数用于检索四字符编解码器,需要作为视频写入器对象 cv2 的第二个参数
VideoWriter_fourcc('M', 'J', 'P', 'G')
in Python.VideoWriter::fourcc('M', 'J', 'P', 'G')
in C++.
-
视频编解码器指定如何压缩视频流。 它将未压缩的视频转换为压缩格式,反之亦然。 要创建 AVI 或 MP4 格式,请使用以下fourcc规范
- AVI:
cv2.VideoWriter_fourcc('M','J','P','G')
- MP4:
cv2.VideoWriter_fourcc(*'XVID')
- AVI:
python
# Initialize video writer object
output = cv2.VideoWriter('Resources/output_video_from_file.avi', cv2.VideoWriter_fourcc('M','J','P','G'), 20, frame_size)
c++
//Initialize video writer object
VideoWriter output("Resources/output.avi", VideoWriter::fourcc('M', 'J', 'P', 'G'),frames_per_second, frame_size);
-
下面以每秒 20 帧的速度将 AVI 视频文件写入磁盘
python
while(vid_capture.isOpened()): # vid_capture.read() methods returns a tuple, first element is a bool # and the second is frame ret, frame = vid_capture.read() if ret == True: # Write the frame to the output files output.write(frame) else: print(‘Stream disconnected’) break
c++
while (vid_capture.isOpened()) { // Initialize frame matrix Mat frame; // Initialize a boolean to check if frames are there or not bool isSuccess = vid_capture.read(frame); // If frames are not there, close it if (isSuccess == false) { cout << "Stream disconnected" << endl; break; } // If frames are present if(isSuccess == true) { //display frames output.write(frame); // display frames imshow("Frame", frame); // wait for 20 ms between successive frames and break // the loop if key q is pressed int key = waitKey(20); if (key == ‘q’) { cout << "Key q key is pressed by the user. Stopping the video" << endl; break; } } }
-
最后,释放video capture和video-writer
python
# Release the objects vid_capture.release() output.release()
c++
// Release the objects vid_capture.release(); output.release();
使用opencv调整图像大小
C++和Python调整图像代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
//读取图像
Mat image = cv::imread("../1.jpg");
imshow("original image",image);
//image.rows表示图片的高度,image.cols表示图片的宽度
cout << "Original Height and Width :" << image.rows << "x" << image.cols << endl;
//将图片缩小到300x200
int down_width = 300;
int down_height = 200;
Mat resized_down;
//将缩小后的图片保存到resized_down中
//resize()函数第一个参数是原始图片,第二个参为转换后保存的图像,第三个参数为缩放后的大小,第四个参数为插值方法,默认为INTER_LINEAR(双线性插值)
resize(image,resized_down,Size(down_width,down_height),INTER_LINEAR);
//将图片放大到700x400
int up_width = 700;
int up_height = 400;
Mat resized_up;
//将放大后的图片保存到resized_up中
resize(image,resized_up,Size(up_width,up_height),INTER_NEAREST);
imshow("Resized Down by defining height and width", resized_down);
imshow("Resized Up image by defining height and width", resized_up);
waitKey();
destroyAllWindows();
return 0;
}
Python
# let's start with the Imports
import cv2
import numpy as np
# Read the image using imread function
image = cv2.imread('image.jpg')
cv2.imshow('Original Image', image)
# let's downscale the image using new width and height
down_width = 300 # 可以通过h,w,c=image.shape返回图片height,wight, number of channels
down_height = 200
down_points = (down_width, down_height)
resized_down = cv2.resize(image, down_points, interpolation= cv2.INTER_LINEAR)
# let's upscale the image using new width and height
up_width = 600
up_height = 400
up_points = (up_width, up_height)
resized_up = cv2.resize(image, up_points, interpolation= cv2.INTER_LINEAR)
# Display images
cv2.imshow('Resized Down by defining height and width', resized_down)
cv2.waitKey()
cv2.imshow('Resized Up image by defining height and width', resized_up)
cv2.waitKey()
#press any key to close the windows
cv2.destroyAllWindows()
使用opencv裁剪图像
图像裁剪C++和Python代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
// Read image
Mat img = imread("../1.jpg");
//img.size().width == img.cols img.size().height == img.rows
cout << "Width : " << img.size().width << endl;
cout << "Height: " << img.size().height << endl;
cout <<"Channels: :" << img.channels() << endl;
// 裁剪图片
// img(Range(80,280), Range(150,330)),将图片高度从80到280,宽度从150到330的范围内裁剪出来
Mat cropped_image = img(Range(80,280), Range(150,330));
cout << "cropped_image Width : " << cropped_image.size().width << endl;
cout << "cropped_image Height: " << cropped_image.size().height << endl;
cout << "cropped_image Channels: :" << cropped_image.channels() << endl;
//display image
imshow(" Original Image", img);
imshow("Cropped Image", cropped_image);
//Save the cropped Image
imwrite("Cropped Image.jpg", cropped_image);
// 0 means loop infinitely
waitKey(0);
destroyAllWindows();
return 0;
}
Python
# Import packages
import cv2
import numpy as np
img = cv2.imread('test.jpg')
print(img.shape) # Print image shape
cv2.imshow("original", img)
# Cropping an image cropped=img[start_row:end_row, start_col:end_col]
cropped_image = img[80:280, 150:330]
# Display cropped image
cv2.imshow("cropped", cropped_image)
# Save the cropped image
cv2.imwrite("Cropped Image.jpg", cropped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
图片裁成小块C++和Python代码
Python
img = cv2.imread("test_cropped.jpg")
image_copy = img.copy()
imgheight=img.shape[0]
imgwidth=img.shape[1]
M = 76
N = 104
x1 = 0
y1 = 0
for y in range(0, imgheight, M):
for x in range(0, imgwidth, N):
if (imgheight - y) < M or (imgwidth - x) < N:
break
y1 = y + M
x1 = x + N
# check whether the patch width or height exceeds the image width or height
if x1 >= imgwidth and y1 >= imgheight:
x1 = imgwidth - 1
y1 = imgheight - 1
#Crop into patches of size MxN
tiles = image_copy[y:y+M, x:x+N]
#Save each patch into file directory
cv2.imwrite('saved_patches/'+'tile'+str(x)+'_'+str(y)+'.jpg', tiles)
cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
elif y1 >= imgheight: # when patch height exceeds the image height
y1 = imgheight - 1
#Crop into patches of size MxN
tiles = image_copy[y:y+M, x:x+N]
#Save each patch into file directory
cv2.imwrite('saved_patches/'+'tile'+str(x)+'_'+str(y)+'.jpg', tiles)
cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
elif x1 >= imgwidth: # when patch width exceeds the image width
x1 = imgwidth - 1
#Crop into patches of size MxN
tiles = image_copy[y:y+M, x:x+N]
#Save each patch into file directory
cv2.imwrite('saved_patches/'+'tile'+str(x)+'_'+str(y)+'.jpg', tiles)
cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
else:
#Crop into patches of size MxN
tiles = image_copy[y:y+M, x:x+N]
#Save each patch into file directory
cv2.imwrite('saved_patches/'+'tile'+str(x)+'_'+str(y)+'.jpg', tiles)
cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
#Save full image into file directory
cv2.imshow("Patched Image",img)
cv2.imwrite("patched.jpg",img)
cv2.waitKey()
cv2.destroyAllWindows()
C++
Mat img = imread("test_cropped.jpg");
Mat image_copy = img.clone();
int imgheight = img.rows;
int imgwidth = img.cols;
int M = 76;
int N = 104;
int x1 = 0;
int y1 = 0;
for (int y = 0; y<imgheight; y=y+M)
{
for (int x = 0; x<imgwidth; x=x+N)
{
if ((imgheight - y) < M || (imgwidth - x) < N)
{
break;
}
y1 = y + M;
x1 = x + N;
string a = to_string(x);
string b = to_string(y);
if (x1 >= imgwidth && y1 >= imgheight)
{
x = imgwidth - 1;
y = imgheight - 1;
x1 = imgwidth - 1;
y1 = imgheight - 1;
// crop the patches of size MxN
Mat tiles = image_copy(Range(y, imgheight), Range(x, imgwidth));
//save each patches into file directory
imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);
rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);
}
else if (y1 >= imgheight)
{
y = imgheight - 1;
y1 = imgheight - 1;
// crop the patches of size MxN
Mat tiles = image_copy(Range(y, imgheight), Range(x, x+N));
//save each patches into file directory
imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);
rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);
}
else if (x1 >= imgwidth)
{
x = imgwidth - 1;
x1 = imgwidth - 1;
// crop the patches of size MxN
Mat tiles = image_copy(Range(y, y+M), Range(x, imgwidth));
//save each patches into file directory
imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);
rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);
}
else
{
// crop the patches of size MxN
Mat tiles = image_copy(Range(y, y+M), Range(x, x+N));
//save each patches into file directory
imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);
rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);
}
}
}
imshow("Patched Image", img);
imwrite("patched.jpg",img);
waitKey();
destroyAllWindows();
使用 opencv进行图像旋转和平移
C++和Python旋转代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat img = imread("../1.jpg");
imshow("img",img);
double angle = 45;
Point2d center((img.cols-1)/2.0,(img.rows-1)/2.0);
//getRotationMatrix2D()函数 center:输入图像的旋转中心,angle: 以度为单位的旋转角度,scale:各向同性比例因子,根据提供的值放大或缩小图像
//如果angle为正,则图像逆时针方向旋转。如果要将图像顺时针旋转相同的量,则angle需要为负值。
Mat rotation_matix = getRotationMatrix2D(center, angle, 1.0);
Mat rotated_image;
//warpAffine()函数对图像应用仿射变换,应用仿射变换后,原始图像中的所有平行线在输出图像中也将保持平行。
//img 是输入的原始图像,rotated_image 是输出的旋转后的图像,矩阵 rotation_matix 应用变换, img.size()输出图片的大小。
warpAffine(img, rotated_image, rotation_matix, img.size());
imshow("rotated image", rotated_image);
waitKey(0);
imwrite("rotated_imag.jpg",rotated_image);
return 0;
}
Python
import cv2
# Reading the image
image = cv2.imread('image.jpg')
# dividing height and width by 2 to get the center of the image
height, width = image.shape[:2]
# get the center coordinates of the image to create the 2D rotation matrix
center = (width/2, height/2)
# using cv2.getRotationMatrix2D() to get the rotation matrix(得到2D选择矩阵)
rotate_matrix = cv2.getRotationMatrix2D(center=center, angle=45, scale=1)
# rotate the image using cv2.warpAffine(得到旋转的图像)
rotated_image = cv2.warpAffine(src=image, M=rotate_matrix, dsize=(width, height))
cv2.imshow('Original image', image)
cv2.imshow('Rotated image', rotated_image)
# wait indefinitely, press any key on keyboard to exit
cv2.waitKey(0)
# save the rotated image to disk
cv2.imwrite('rotated_image.jpg', rotated_image)
C++和Python平移代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat img = imread("../1.jpg");
cout<<img.size().width<<endl;
cout<<img.size().height<<endl;
//cols是列数(宽度),rows是行数(高度)
float width = img.cols;
float height = img.rows;
float tx = width/4;
float ty = height/4;
//让图像需要移动的像素为tx和ty。M = [1 0 tx 提供正值tx将使图像向右移动,负值将使图像向左移动。
// 0 1 ty] 正值ty将使图像向下移动,而负值将使图像向上移动。
float warp_values[] = {1.0,0.0,tx,0.0,1.0,ty};
//将warp_values转换为2行3列的二维数组
Mat translation_matrix = Mat(2,3,CV_32F,warp_values);
Mat translated_img;
//warpAffine()是一个通用函数,可用于对图像应用任何类型的仿射变换。只需适当地定义矩阵 M 即可。
warpAffine(img, translated_img, translation_matrix,img.size());
imshow("Translated image", translated_img);
imshow("Original image", img);
waitKey(0);
// save the translated image to disk
imwrite("translated_image.jpg", translated_img);
return 0;
}
Python
#include "opencv2/opencv.hpp"
using namespace cv
// read the image
Mat image = imread("image.jpg");
// get the height and width of the image
int height = image.cols;
int width = image.rows;
// get tx and ty values for translation
float tx = float(width) / 4;
float ty = float(height) / 4;
// create the translation matrix using tx and ty
float warp_values[] = { 1.0, 0.0, tx, 0.0, 1.0, ty };
Mat translation_matrix = Mat(2, 3, CV_32F, warp_values);
// save the resulting image in translated_image matrix
Mat translated_image;
// apply affine transformation to the original image using the translation matrix
warpAffine(image, translated_image, translation_matrix, image.size());
//display the original and the Translated images
imshow("Translated image", translated_image);
imshow("Original image", image);
waitKey(0);
// save the translated image to disk
imwrite("translated_image.jpg", translated_image);
使用opencv注释图像
C++总代码
C++
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat img = cv::imread("../1.jpg");
cv::imshow("img",img);
if(img.empty())
{
cout<<"Image not read"<<endl;
return -1;
}
//画一条线
Mat imageLine = img.clone();
Point point1(200,80);
Point point2(350,80);
// line()函数,第一个参数是图像,接下来的两个参数是直线的起点和终点,后面有个参数是线的颜色,2为线的厚度,8为线的类型
line(imageLine,point1,point2,Scalar(0,0,255),2,8,0);
imshow("line",imageLine);
//画一个圆
Mat imageCircle = img.clone();
Point circleee_center(380,180);
int radius = 20;
//circle()函数,第一个参数是图像,接下来两个参数是圆的中点和半径,后面有个参数是圆的颜色,-1为实心圆(如果是正数这是圆线的厚度)
circle(imageCircle,circleee_center,radius,Scalar(0,255,0),-1,8,0);
imshow("circle",imageCircle);
//画一个矩形
Mat imageRect = img.clone();
Point point1Rect(100,200);
Point point2Rect(300,250);
//rectangle()函数,第一个参数是图像,接下来两个参数是矩形的起点和终点
rectangle(imageRect,point1Rect,point2Rect,Scalar(0,255,255),2,8,0);
imshow("rect",imageRect);
//画一个椭圆,半椭圆
Mat imageEllipse = img.clone();
Point centerEllipse1(400,150);
Point centerEllipse2(200,200);
//axis()函数,第一个参数是椭圆的长轴,第二个参数是椭圆的短轴
Point axis1(100,50);
Point axis2(100,50);
Point axis3(100,50);
//ellipse()函数,第一个参数是图像,接下来两个参数是椭圆的中心点,第三个参数是椭圆的长轴和短轴,第四个参数是角度,后面两个参数是画一个完整的椭圆0到360度
ellipse(imageEllipse,centerEllipse1,axis1,0,0,360,Scalar(0,255,255),2,8,0);
//90表示椭圆旋转了90度,也就是从水平方向变成了垂直方向
ellipse(imageEllipse,centerEllipse1,axis2,90,0,360,Scalar(0,255,255),2,8,0);
//0,180;180,360是画半圆
ellipse(imageEllipse,centerEllipse2,axis3,0,0,180,Scalar(0,0,255),-2,8,0);
ellipse(imageEllipse,centerEllipse2,axis3,0,180,360,Scalar(0,0,255),3,8,0);
imshow("ellipse",imageEllipse);
//添加文字
Mat imageText = img.clone();
//putText()函数,第一个参数是图像,接下来两个参数是文本内容,和文本的起始位置,第三个参数是字体的设置,3为字体的大小
putText(imageText, "Hello, OpenCv!", Point(200, 100), FONT_HERSHEY_DUPLEX, 1, Scalar(0,0,255));
imshow("text", imageText);
waitKey(0);
return 0;
}
Python画彩色线条
- 画彩色线条:line(image, start_point, end_point, color, thickness)
# Import dependencies
import cv2
# Read Images
img = cv2.imread('sample.jpg')
# Display Image
cv2.imshow('Original Image',img)
cv2.waitKey(0)
# Print error message if image is null
if img is None:
print('Could not read image')
# Draw line on image
imageLine = img.copy() # 进行拷贝图片
# Draw the image from point A to B
pointA = (200,80)
pointB = (450,80)
# 左上角是原始的点,x 轴代表图像的水平方向 y轴代表图像的垂直方向
# 其中imageLine是原始的图片, 开始点,结束点,线条的颜色,线条粗细,
cv2.line(imageLine, pointA, pointB, (255, 255, 0), thickness=3, lineType=cv2.LINE_AA)
cv2.imshow('Image Line', imageLine)
cv2.waitKey(0)
Python画圆(实心圆)
- 画圆:circle(image, center_coordinates, radius, color, thickness)
- 参数分别是图片,中心点,半径,颜色,线条粗细,thickness=-1为实心圆
# Make a copy of image
imageCircle = img.copy()
# define the center of circle
circle_center = (415,190)
# define the radius of the circle
radius =100
# Draw a circle using the circle() Function
cv2.circle(imageCircle, circle_center, radius, (0, 0, 255), thickness=3, lineType=cv2.LINE_AA)
# Display the result
cv2.imshow("Image Circle",imageCircle)
cv2.waitKey(0)
Python画矩形
- 画一个矩形:rectangle(image, start_point, end_point, color, thickness)
- start_point: (top, left) end_point: (bottom, right)
# make a copy of the original image
imageRectangle = img.copy()
# define the starting and end points of the rectangle
start_point =(300,115)
end_point =(475,225)
# draw the rectangle
cv2.rectangle(imageRectangle, start_point, end_point, (0, 0, 255), thickness= 3, lineType=cv2.LINE_8)
# display the output
cv2.imshow('imageRectangle', imageRectangle)
cv2.waitKey(0)
Python添加文本
- 添加文本:putText(image, text, org, font, fontScale, color)
- image: 原始图片 text: 需要标注的文本
- org: 文本处在的(top, left)坐标
- fontFace: OpenCV 支持 Hershey 字体集合中的几种字体样式,以及斜体字体。 如下:
- FONT_HERSHEY_SIMPLEX = 0,
- FONT_HERSHEY_PLAIN = 1,
- FONT_HERSHEY_DUPLEX = 2,
- FONT_HERSHEY_COMPLEX = 3,
- FONT_HERSHEY_TRIPLEX = 4,
- FONT_HERSHEY_COMPLEX_SMALL = 5,
- FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
- FONT_HERSHEY_SCRIPT_COMPLEX = 7,
- FONT_ITALIC = 16
- fontScale: 字体比例是一个浮点值,用于向上或向下缩放字体的基本大小。 根据图像的分辨率,选择适当的字体比例。
- color: 这里是一个BGR元组(B, G, R)
# make a copy of the original image
imageText = img.copy()
#let's write the text you want to put on the image
text = 'I am a Happy dog!'
#org: Where you want to put the text
org = (50,350)
# write the text on the input image
# 原始图片 文本 左上角 字体样式 字体缩放比例 字体颜色
cv2.putText(imageText, text, org, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=1.5, color=(250,225,100))
# display the output image with text over it
cv2.imshow("Image Text",imageText)
cv2.waitKey(0)
cv2.destroyAllWindows()
使用OpenCV-扩充图像边界cv::copyMakeBorder
使用比例因子调整图像大小
INTER_AREA
: 使用像素区域关系进行重采样。 这最适合减小图像的大小(缩小)。 当用于放大图像时,它使用 INTER_NEAREST 方法。INTER_CUBIC
: 这使用双三次插值来调整图像大小。 在调整大小和插入新像素时,此方法作用于图像的 4×4 相邻像素。 然后取 16 个像素的权重平均值来创建新的插值像素。INTER_LINEAR
: 这种方法有点类似于 INTER_CUBIC 插值。 但与 INTER_CUBIC 不同,它使用 2×2 相邻像素来获得插值像素的加权平均值。INTER_NEAREST
: INTER_NEAREST 方法使用最近邻概念进行插值。 这是最简单的方法之一,仅使用图像中的一个相邻像素进行插值。
C++和Python代码
C++
# Scaling Down the image 0.6 using different Interpolation Method
Mat res_inter_linear, res_inter_nearest, res_inter_area;
resize(image, res_inter_linear, Size(), scale_down, scale_down, INTER_LINEAR);
resize(image, res_inter_nearest, Size(), scale_down, scale_down, INTER_NEAREST);
resize(image, res_inter_area, Size(), scale_down, scale_down, INTER_AREA);
Mat a,b,c;
vconcat(res_inter_linear, res_inter_nearest, a);
vconcat(res_inter_area, res_inter_area, b);
vconcat(a, b, c);
// Display the image Press any key to continue
imshow("Inter Linear :: Inter Nearest :: Inter Area :: Inter Area", c);
Python
# Scaling Down the image 0.6 times using different Interpolation Method
res_inter_nearest = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_NEAREST)
res_inter_linear = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_LINEAR)
res_inter_area = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_AREA)
# Concatenate images in horizontal axis for comparison
vertical= np.concatenate((res_inter_nearest, res_inter_linear, res_inter_area), axis = 0)
# Display the image Press any key to continue
cv2.imshow('Inter Nearest :: Inter Linear :: Inter Area', vertical)