二叉搜索树-AVL
package ALV; public class ALVTreeDemo { /* 平衡二叉树:也叫平衡二叉搜索树,也叫AVL,与二叉排序树相比,可以保证查询效率(前提是一颗二叉排序树) 特点:左右两棵子树的高度差绝对值不超过一 平衡二叉树的常用实现方法有:红黑树和AVL(算法) */ public static void main(String[] args) { int[] arr = {10,11,7,6,8,9}; AVLtree avl = new AVLtree(); for (int i = 0; i <arr.length ; i++) { avl.add(new Node(arr[i])); } avl.midOrder(); System.out.println(avl.getRoot().height()); System.out.println(avl.getRoot().leftheight()); System.out.println(avl.getRoot().rightheight()); } } class AVLtree{ private Node root; public void setRoot(Node root) { this.root = root; } public Node getRoot() { return root; } //添加节点的方法 public void add(Node node){ if(root==null){ root=node; }else{ this.root.addNode2(node); } } //中序遍历 public void midOrder(){ if(this.root!=null){ this.root.midOrder(); }else{ System.out.println("该树为空"); } } } class Node{ int value; Node left; Node right; public Node(){ } public Node(int value){ this.value=value; } //添加节点的方法 //要求满足二叉排序树的要求 public void addNode2(Node node){ if(node==null){ return; } if(node.value<this.value){ if(this.left==null){ this.left=node; }else{ this.left.addNode2(node); } }else{ if(this.right==null){ this.right=node; }else{ this.right.addNode2(node); } } //添加完一个节点以后右子树的高度-左子树的高度>1,进行左旋转 if(rightheight()-leftheight()>1){ if(this.right!=null&&(this.right.leftheight()>this.right.rightheight())){ this.right.rightRatate(); leftRatate(); }else{ leftRatate(); } return; } if(leftheight()-rightheight()>1){ if(this.left!=null && this.left.rightheight()>this.left.leftheight()){ //记当前节点的左子树为left节点 //left节点的右子树高度>left节点的左子树高度,需要先将left节点进行左旋转 this.left.leftRatate(); rightRatate(); }else{ rightRatate(); } //当前节点进行右旋转 } } public void midOrder(){ if(this.left!=null){ this.left.midOrder(); } System.out.println(this); if(this.right!=null){ this.right.midOrder(); } } //计算以当前节点为根节点树的高度 public int height(){ return Math.max(this.left==null?0:this.left.height(), this.right==null?0:this.right.height())+1; } //返回左子树的高度 public int leftheight(){ if(this.left==null){ return 0; }else{ return this.left.height(); } } //返回右子树的高度 public int rightheight(){ if(this.right==null){ return 0; }else{ return this.right.height(); } } //左旋转的实现 private void leftRatate(){ //创建新的节点为当前根节点的值 Node newborn = new Node(this.value); //新节点的左子节点为当前节点的左子节点 newborn.left=this.left; //新节点的右子节点为当前节点的右子节点的左子节点(满足二叉排序树) newborn.right=this.right.left; //将当前节点替换为为当前节点的右子节点(右子树的高度降低) this.value=this.right.value; //新的根节点的右子节点为元根节点的右子节点,做子节点为新生成的节点 //满足排序树 this.right=this.right.right; this.left=newborn; //添加完一个节点以后调用 } private void rightRatate(){ //右旋 Node newborn = new Node(this.value); newborn.right=this.right; newborn.left=this.left.right; this.value=this.left.value; this.left=this.left.left; this.right=newborn; } @Override public String toString() { return "Node{" + "value=" + value + '}'; } }