NFA转化为DFA
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机)
NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA。
提示:ε是空串的意思!空串没有任何字符!
这里直接讲将ε-NFA转化为DFA的过程,将NFA转化为DFA的情况类似。
转化的过程总的来说有两大步骤:ε-NFA转化为DFA,以及DFA简化
ε-NFA转化为DFA前件知识
1、对状态图进行改造
增加状态X,Y,使之成为新的唯一的初态和终态,从X引ε弧到原初态节点,从原终态节点引ε弧到Y节点。
2、利用子集法对NFA进行确定化。
- 子集法
子集法:将NFA转化为接受同样语言的DFA。
DFA的每一个状态对应NFA的一组状态;
DFA使用它的状态去记录NFA读入一个符号后可能达到的所有状态
如上图,A对应ε-NFA的0和1状态,A代表的是一组状态。因此,DFA使用它的状态去记录NFA读入一个符号后可能达到的所有状态。
- 构造状态转化表
- ε-closure(ε-闭包)
状态集合I的ε-闭包是一状态集。
①任何状态q∈I,则q∈ε-closure(I)
②任何状态q∈I,则q经任意条ε弧而能到达的状态q'∈ε-closure(I)
比如上图,假设I={0},那么0∈ε-closure(I);并且0经ε弧能到达1状态,因此,1∈ε-closure(I)。即:ε-closure({0})={0,1}。
案例再现
可能前面的理论有些乱,理不清,这里用一个例题演绎如何将ε-NFA转化为DFA。
已知下面的NFA图,求确定后的DFA:
①改造状态图:在起始状态分别加上X、Y状态,连接输入符号为ε。
②状态转换表
状态集合 \状态 | 0 | 1 |
---|---|---|
A= | B={2,3,1} | C= |
B= | D= | C= |
C= | B= | C= |
D= | D= | C= |
!提示:A,B,C,D表示状态集合;0,1分别表示状态0和1。第二行第二列表示状态集合A的状态在输入符号0后到达的状态的ε-闭包为B={2,3,1}。
获得改造后的状态图后,我们找到起始状态为X,由于X与0之间是输入的ε符号,所以X与0等价;同理,0与2等价,1与2等价。所以,起始状态有{X,0,2,1},我们给它命名为状态A。
再看第二列,处于起始状态A时,当输入字符为0时到达的状态分别有:2输入0到达2本身;1输入0到达3,因此还有3状态。再看与2等价的状态有:1;与3等价的状态无。因此,输入字符0时到达的状态有{2,3},它的闭包是:{2,3,1}。
第三列同理,处于起始状态A时,当输入字符为1时到达的状态只有2。2的等价状态有1。因此,输入字符1时A到达的状态有{2},它的闭包是{2,1}。
!注意:状态转换表里面填入的是闭包结果。
最后得到的DFA图为:(未简化)
DFA简化
状态S和状态T等价的条件
- 一致性条件:状态S和T必须同时为可接受状态或不可接受状态。
- 蔓延性条件:对于所有符号,状态S和T必须转换到等价的状态里。
DFA简化算法:
1、假定一个集合中的状态都是等价的,首先将DFA的所有状态放在一个集合I中。
2、所有状态分成两个子集——终态集和非终态集。运用判定状态等价原则分别对两个子集的状态进行分析和划分。若发现某个状态与其他状态不等价,则将其作为一个新的状态子集,如果无法区分,则放在同一子集中。
3、从每个子集中选出一个状态做代表,即可构成简化的DFA。
4、含有原来初态的子集仍为初态,各终态的子集仍为终态。
案例再现
将上面未简化的DFA图简化:
①I = {A,B,C,D}
②拆分终态集和非终态集:
非终态集{A,B,C}+终态集{D}
③对{A,B,C}继续拆分:
A输入0后到达B,而B⊆{A,B,C},故A不能拆分;
再看B,B输入0后到达D,而D¢,故B可以拆分;
再看C,C输入0后到达B,B⊆{A,B,C},故C也不能拆分。
综上:{A,B,C}可拆分为{A,C}+{B}。
④对{A,C}继续拆分:
A输入1时到达C,而C⊆{A,C},故A不可拆分;
再看C,C输入1时到达C状态,而C⊆{A,C},故C也不可拆分。
⑤综合起来,上面未简化的DFA图简化后得到的状态应该是:{A,C}+{B}+{D}。
!注意:同一个{}大括号里面的状态是等价的,因此,画图时选其一即可。
简化后的DFA图为:
Are you got it?(你学会了吗?)