并发编程-进~线程-02互斥锁
并发编程更加充分的利用IO资源,但是也带来了新的问题:当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。
一、多进程抢占输出资源
import os
import time
import random
from multiprocessing import Process
def work(n):
print('%s: %s is running' %(n,os.getpid()))
time.sleep(random.random())
print('%s:%s is done' %(n,os.getpid()))
if __name__ == '__main__':
for i in range(3):
p=Process(target=work,args=(i,))
p.start()
二、使用锁维护执行顺序
由并发变成了串行,牺牲了运行效率,但避免了竞争
import os
import time
import random
from multiprocessing import Process,Lock
def work(lock,n):
lock.acquire()
print('%s: %s is running' % (n, os.getpid()))
time.sleep(random.random())
print('%s: %s is done' % (n, os.getpid()))
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(3):
p=Process(target=work,args=(lock,i))
p.start()
上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。
三丶进程的互斥锁的实战应用
from multiprocessing import Process,Lock
import time
import json
# 查票
def search(i):
with open('data','r',encoding='utf-8') as f:
data = f.read()
t_d = json.loads(data)
print('用户%s查询余票为:%s'%(i,t_d.get('ticket')))
# 买票
def buy(i):
with open('data','r',encoding='utf-8') as f:
data = f.read()
t_d = json.loads(data)
time.sleep(1)
if t_d.get('ticket') > 0:
# 票数减一
t_d['ticket'] -= 1
# 更新票数
with open('data','w',encoding='utf-8') as f:
json.dump(t_d,f)
print('用户%s抢票成功'%i)
else:
print('没票了')
def run(i,mutex):
search(i)
mutex.acquire() # 抢锁 只要有人抢到了锁 其他人必须等待该人释放锁
buy(i)
mutex.release() # 释放锁
if __name__ == '__main__':
mutex = Lock() # 生成了一把锁
for i in range(10):
p = Process(target=run,args=(i,mutex))
p.start()