CodeForces 304C

E - E
Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Bike is interested in permutations. A permutation of length n is an integer sequence such that each integer from 0 to (n - 1) appears exactly once in it. For example, [0, 2, 1] is a permutation of length 3 while both [0, 2, 2] and [1, 2, 3] is not.

A permutation triple of permutations of length n(a, b, c) is called a Lucky Permutation Triple if and only if . The sign ai denotes the i-th element of permutation a. The modular equality described above denotes that the remainders after dividing ai + bi by n and dividing ci by n are equal.

Now, he has an integer n and wants to find a Lucky Permutation Triple. Could you please help him?

Input

The first line contains a single integer n(1 ≤ n ≤ 105).

Output

If no Lucky Permutation Triple of length n exists print -1.

Otherwise, you need to print three lines. Each line contains n space-seperated integers. The first line must contain permutation a, the second line — permutation b, the third — permutation c.

If there are multiple solutions, print any of them.

Sample Input

Input
5
Output
1 4 3 2 0
1 0 2 4 3
2 4 0 1 3
Input
2
Output
-1

Hint

In Sample 1, the permutation triple ([1, 4, 3, 2, 0], [1, 0, 2, 4, 3], [2, 4, 0, 1, 3]) is Lucky Permutation Triple, as following holds:

  • ;
  • ;
  • ;
  • ;
  • .

In Sample 2, you can easily notice that no lucky permutation triple exists.

 

 

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    if(n==0)
    {
        printf("%d\n%d\n%d\n",0,0,0);
        return 0;
    }
    if(!(n&1))
    {
        printf("-1\n");
        return 0;
    }
    for(int i=0;i<n;i++)
    {
        printf("%d ",i);
    }
    printf("\n");
    for(int i=1;i<n;i++)
    {
        printf("%d ",i);
    }
    printf("0\n");
    for(int i=0;i<n;i++)
        printf("%d ",(i+i+1)%n);
    return 0;
}
View Code

 

http://www.voidcn.com/blog/theArcticOcean/article/p-4944592.html

这个大神讲解的挺好的。

posted @ 2016-04-18 22:53  超级学渣渣  阅读(228)  评论(0编辑  收藏  举报