图像处理中的valid卷积与same卷积
valid卷积
在full卷积的卷积过程中,会遇到\(K_{flip}\)靠近I的边界(K矩阵与I矩阵),就会有部分延申到I之外,这时候忽略边界,只考虑I完全覆盖\(K_{flip}\)内的值情况,这个的过程就是valid卷积。一个高为H1,宽为W1的矩阵I与高为H2,宽为W2的矩阵K,在H1大于等于H2,W1大于等于W2的情况下,valid卷积的结果就是一个(H1-H2+1)*(W-W+1)的矩阵\(C_{valid}\)。
\[C_{valid}与C_{full}的对应关系为: C_{valid} = C_{full}( Rect (W_{2}-1,H_{2}-1,W_{1}-W_{2}+1,H_{1}-H_{2}+1) )
\]
same卷积
无论是full卷积还是valid卷积都不会得到正好的尺寸,要么比原尺寸大要么比原尺寸小,这时就需要same卷积来解决这个问题。若想得到宽和高都正好的矩阵我们首先需要给\(K_{flip}\)一个锚点,将锚点放在(循环)图像矩阵的(r,c)处,((r,c)在矩阵之内),将对应位置的元素逐个相乘,最终将所有的积进行求和作为输出图像矩阵在(r,c)处的输出值。这个过程称为same卷积。
OpenCv函数copyMakeBorder的参数表
参数 | 解释 |
---|---|
src | 输入矩阵 |
dst | 输出矩阵 |
top | 上侧扩充的行数 |
bottom | 下侧扩充的行数 |
left | 左侧扩充的行数 |
right | 右侧扩充的行数 |
borderType | 边界扩充的类型 |
value | border Type= BORDER_CONSTANT事的常数 |
其中borderType有多种类型,比如:BORDER_REPLICATE(边界复制)、BORDER_CONSTANT(常数扩充)、BORDER_REFLECT(反射扩充)等。 | |
在使用Python进行卷积操作时用到包Scipy,其中有关的操作函数为convolve2d(in1,in2,mode='full',boundary='fill',fillvalue=0) | |
参数 | 解释 |
-- | -- |
in1 | 输入数组 |
in2 | 输入数组,代表K(卷积算子) |
mode | 卷积类型,也就是以上提到的三种类型:full,valid,same |
boundary | 边界填充:fill\wrap\symm |
fillvalue | 当boundary='fill'时,设置边界填充的值,默认为0 |
在这里需要注意的是当model为same时卷积算子的锚点位置由不同尺寸而不同,假设K(卷积算子)的宽和高分别为W、H。 | |
W和H的值 | 锚点位置 |
-- | -- |
均为奇数 | 默认为中心点 |
H为偶数、W为奇数 | (H-1,(W-1)/2) |
H为奇数,W为偶数 | ((H-1)/2,W-1) |
均为偶数 | (H-1,W-1) |
代码实现: |
import numpy as np
from scipy import signal
if __name__ == "__main__":
I = np.array([[1,2],[3,4],np.float32])
#I的高和宽
H1,W1 = I.shape[:2]
#卷积算子
k = np.array([[-1,-2],[2,1],np.float32])
#K的宽和高
H2,W2 = k.shape[:2]
#计算full卷积
c_full = signal.convolve2d(I,k,mode='full')
#设定锚点
r,c = 0,0
#根据锚点来从full卷积中截取same卷积
c_same= c_full[H2-r-1:H1-r-1,W2-c-1:W1+W2-c-1]