一、概述

本文将讲述Bit-Map算法的相关原理,Bit-Map算法的一些利用场景,例如BitMap解决海量数据寻找重复、判断个别元素是否在海量数据当中等问题.最后说说BitMap的特点已经在各个场景的使用性。

二、Bit-Map算法

先看看这样的一个场景(来自《编程珠玑》):给一台普通PC,2G内存,要求处理一个包含40亿个不重复并且没有排过序的无符号的int整数,给出一个整数,问如果快速地判断这个整数是否在文件40亿个数据当中?

问题思考:

40亿个int占(40亿*4)/1024/1024/1024 大概为14.9G左右,很明显内存只有2G,放不下,因此不可能将这40亿数据放到内存中计算。

要快速的解决这个问题最好的方案就是将数据搁内存了,所以现在的问题就在如何在2G内存空间以内存储着40亿整数。

一个int整数在golang中是占4个字节的即要32bit位,如果能够用一个bit位来标识一个int整数那么存储空间将大大减少,算一下40亿个int需要的内存空间为40亿/8/1024/1024大概为476.83 mb,这样的话我们完全可以将这40亿个int数放到内存中进行处理。

具体思路:

1个int占4字节即4*8=32位,那么我们只需要申请一个int数组长度为 int tmp[1+N/32]即可存储完这些数据,其中N代表要进行查找的总数,tmp中的每个元素在内存在占32位可以对应表示十进制数0~31,所以可得到BitMap表:

tmp[0]:可表示0~31

tmp[1]:可表示32~63

tmp[2]可表示64~95

如何判断int数字在tmp数组的哪个下标?

这个其实可以通过直接除以32取整数部分,例如:整数8除以32取整等于0,那么8就在tmp[0]上。另外,我们如何知道了8在tmp[0]中的32个位中的哪个位,这种情况直接mod上32就ok,又如整数8,在tmp[0]中的第8 mod上32等于8,那么整数8就在tmp[0]中的第八个bit位(从右边数起)。

go简单实现:

package bitmap

import (
	"bytes"
	"fmt"
)

type Bitmap struct {
	words  []uint64
	length int
}

func New() *Bitmap {
	return &Bitmap{}
}
func (bitmap *Bitmap) Has(num int) bool {
	word, bit := num/64, uint(num%64)
	return word < len(bitmap.words) && (bitmap.words[word]&(1<<bit)) != 0
}

func (bitmap *Bitmap) Add(num int) {
	word, bit := num/64, uint(num%64)
	for word >= len(bitmap.words) {
		bitmap.words = append(bitmap.words, 0)
	}
	// 判断num是否已经存在bitmap中
	if bitmap.words[word]&(1<<bit) == 0 {
		bitmap.words[word] |= 1 << bit
		bitmap.length++
	}
}

func (bitmap *Bitmap) Len() int {
	return bitmap.length
}

func (bitmap *Bitmap) String() string {
	var buf bytes.Buffer
	buf.WriteByte('{')
	for i, v := range bitmap.words {
		if v == 0 {
			continue
		}
		for j := uint(0); j < 64; j++ {
			if v&(1<<j) != 0 {
				if buf.Len() > len("{") {
					buf.WriteByte(' ')
				}
				fmt.Fprintf(&buf, "%d", 64*uint(i)+j)
			}
		}
	}
	buf.WriteByte('}')
	fmt.Fprintf(&buf,"\nLength: %d", bitmap.length)
	return buf.String()
}

  

posted on 2022-02-22 01:56  黑熊一只  阅读(532)  评论(0编辑  收藏  举报