L6循环神经网络

循环神经网络

本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量HH,用HtH_{t}表示HH在时间步tt的值。HtH_{t}的计算基于XtX_{t}Ht1H_{t-1},可以认为HtH_{t}记录了到当前字符为止的序列信息,利用HtH_{t}对序列的下一个字符进行预测。
Image Name

循环神经网络的构造

我们先看循环神经网络的具体构造。假设XtRn×d\boldsymbol{X}_t \in \mathbb{R}^{n \times d}是时间步tt的小批量输入,HtRn×h\boldsymbol{H}_t \in \mathbb{R}^{n \times h}是该时间步的隐藏变量,则:

Ht=ϕ(XtWxh+Ht1Whh+bh). \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h).

其中,WxhRd×h\boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h}WhhRh×h\boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h}bhR1×h\boldsymbol{b}_{h} \in \mathbb{R}^{1 \times h}ϕ\phi函数是非线性激活函数。由于引入了Ht1Whh\boldsymbol{H}_{t-1} \boldsymbol{W}_{hh}HtH_{t}能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于HtH_{t}的计算基于Ht1H_{t-1},上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。

在时间步tt,输出层的输出为:

Ot=HtWhq+bq. \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q.

其中WhqRh×q\boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q}bqR1×q\boldsymbol{b}_q \in \mathbb{R}^{1 \times q}

从零开始实现循环神经网络

我们先尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里我们使用周杰伦的歌词作为语料,首先我们读入数据:

import torch
import torch.nn as nn
import time
import math
import sys
sys.path.append("/home/kesci/input")
import d2l_jay9460 as d2l
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

one-hot向量

我们需要将字符表示成向量,这里采用one-hot向量。假设词典大小是NN,每次字符对应一个从00N1N-1的唯一的索引,则该字符的向量是一个长度为NN的向量,若字符的索引是ii,则该向量的第ii个位置为11,其他位置为00。下面分别展示了索引为0和2的one-hot向量,向量长度等于词典大小。

def one_hot(x, n_class, dtype=torch.float32):
    result = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)  # shape: (n, n_class)
    result.scatter_(1, x.long().view(-1, 1), 1)  # result[i, x[i, 0]] = 1
    return result
    
x = torch.tensor([0, 2])
x_one_hot = one_hot(x, vocab_size)
print(x_one_hot)
print(x_one_hot.shape)
print(x_one_hot.sum(axis=1))
tensor([[1., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 1.,  ..., 0., 0., 0.]])
torch.Size([2, 1027])
tensor([1., 1.])

我们每次采样的小批量的形状是(批量大小, 时间步数)。下面的函数将这样的小批量变换成数个形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步tt的输入为XtRn×d\boldsymbol{X}_t \in \mathbb{R}^{n \times d},其中nn为批量大小,dd为词向量大小,即one-hot向量长度(词典大小)。

def to_onehot(X, n_class):
    return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]

X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)
5 torch.Size([2, 1027])

初始化模型参数

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
# num_inputs: d
# num_hiddens: h, 隐藏单元的个数是超参数
# num_outputs: q

def get_params():
    def _one(shape):
        param = torch.zeros(shape, device=device, dtype=torch.float32)
        nn.init.normal_(param, 0, 0.01)
        return torch.nn.Parameter(param)

    # 隐藏层参数
    W_xh = _one((num_inputs, num_hiddens))
    W_hh = _one((num_hiddens, num_hiddens))
    b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device))
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device))
    return (W_xh, W_hh, b_h, W_hq, b_q)

定义模型

函数rnn用循环的方式依次完成循环神经网络每个时间步的计算。

def rnn(inputs, state, params):
    # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

函数init_rnn_state初始化隐藏变量,这里的返回值是一个元组。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

做个简单的测试来观察输出结果的个数(时间步数),以及第一个时间步的输出层输出的形状和隐藏状态的形状。

print(X.shape)
print(num_hiddens)
print(vocab_size)
state = init_rnn_state(X.shape[0], num_hiddens, device)
inputs = to_onehot(X.to(device), vocab_size)
params = get_params()
outputs, state_new = rnn(inputs, state, params)
print(len(inputs), inputs[0].shape)
print(len(outputs), outputs[0].shape)
print(len(state), state[0].shape)
print(len(state_new), state_new[0].shape)
torch.Size([2, 5])
256
1027
5 torch.Size([2, 1027])
5 torch.Size([2, 1027])
1 torch.Size([2, 256])
1 torch.Size([2, 256])

裁剪梯度

循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 g\boldsymbol{g},并设裁剪的阈值是θ\theta。裁剪后的梯度

min(θg,1)g \min\left(\frac{\theta}{\|\boldsymbol{g}\|}, 1\right)\boldsymbol{g}

L2L_2范数不超过θ\theta

def grad_clipping(params, theta, device):
    norm = torch.tensor([0.0], device=device)
    for param in params:
        norm += (param.grad.data ** 2).sum()
    norm = norm.sqrt().item()
    if norm > theta:
        for param in params:
            param.grad.data *= (theta / norm)

定义预测函数

以下函数基于前缀prefix(含有数个字符的字符串)来预测接下来的num_chars个字符。这个函数稍显复杂,其中我们将循环神经单元rnn设置成了函数参数,这样在后面小节介绍其他循环神经网络时能重复使用这个函数。

def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,
                num_hiddens, vocab_size, device, idx_to_char, char_to_idx):
    state = init_rnn_state(1, num_hiddens, device)
    output = [char_to_idx[prefix[0]]]   # output记录prefix加上预测的num_chars个字符
    for t in range(num_chars + len(prefix) - 1):
        # 将上一时间步的输出作为当前时间步的输入
        X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)
        # 计算输出和更新隐藏状态
        (Y, state) = rnn(X, state, params)
        # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(Y[0].argmax(dim=1).item())
    return ''.join([idx_to_char[i] for i in output])

我们先测试一下predict_rnn函数。我们将根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。因为模型参数为随机值,所以预测结果也是随机的。

predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,
            device, idx_to_char, char_to_idx)
'分开斗视宁河及游伯搞干墙'

困惑度

我们通常使用困惑度(perplexity)来评价语言模型的好坏。回忆一下“softmax回归”一节中交叉熵损失函数的定义。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

  • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
  • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
  • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size

定义模型训练函数

跟之前章节的模型训练函数相比,这里的模型训练函数有以下几点不同:

  1. 使用困惑度评价模型。
  2. 在迭代模型参数前裁剪梯度。
  3. 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。
def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, is_random_iter, num_epochs, num_steps,
                          lr, clipping_theta, batch_size, pred_period,
                          pred_len, prefixes):
    if is_random_iter:
        data_iter_fn = d2l.data_iter_random
    else:
        data_iter_fn = d2l.data_iter_consecutive
    params = get_params()
    loss = nn.CrossEntropyLoss()

    for epoch in range(num_epochs):
        if not is_random_iter:  # 如使用相邻采样,在epoch开始时初始化隐藏状态
            state = init_rnn_state(batch_size, num_hiddens, device)
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
        for X, Y in data_iter:
            if is_random_iter:  # 如使用随机采样,在每个小批量更新前初始化隐藏状态
                state = init_rnn_state(batch_size, num_hiddens, device)
            else:  # 否则需要使用detach函数从计算图分离隐藏状态
                for s in state:
                    s.detach_()
            # inputs是num_steps个形状为(batch_size, vocab_size)的矩阵
            inputs = to_onehot(X, vocab_size)
            # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
            (outputs, state) = rnn(inputs, state, params)
            # 拼接之后形状为(num_steps * batch_size, vocab_size)
            outputs = torch.cat(outputs, dim=0)
            # Y的形状是(batch_size, num_steps),转置后再变成形状为
            # (num_steps * batch_size,)的向量,这样跟输出的行一一对应
            y = torch.flatten(Y.T)
            # 使用交叉熵损失计算平均分类误差
            l = loss(outputs, y.long())
            
            # 梯度清0
            if params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            l.backward()
            grad_clipping(params, clipping_theta, device)  # 裁剪梯度
            d2l.sgd(params, lr, 1)  # 因为误差已经取过均值,梯度不用再做平均
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
                    num_hiddens, vocab_size, device, idx_to_char, char_to_idx))

训练模型并创作歌词

现在我们可以训练模型了。首先,设置模型超参数。我们将根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']

下面采用随机采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, True, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)
epoch 50, perplexity 68.292361, time 0.64 sec
 - 分开 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我
 - 不分开 快颗在 一颗两 三颗四 三颗四 三颗四 三颗四 三颗四 三颗四 三颗四 三颗四 三颗四 三颗四 三
epoch 100, perplexity 9.507379, time 0.62 sec
 - 分开 我想想这你 我不能再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我
 - 不分开永 我不能再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 
epoch 150, perplexity 2.919475, time 0.69 sec
 - 分开 有什么娘过 有样它在留  没有神口不有 所不想你以汉我 我都要你的微笑每天都能看到  我知道这里很
 - 不分开期 单后人过小剩来找 几物开最心仪的母斑鸠 印地安老斑鸠 腿短毛不多 除非是人鸦抢 心伤妙传护着 漂
epoch 200, perplexity 1.622072, time 0.66 sec
 - 分开 一直在停留 谁让它停留的 为什么我女朋友场外加油 你却还让我出糗 从小就耳濡目染 什么刀枪跟棍棒 
 - 不分开扫把的胖女巫 用拉丁文念咒语啦啦呜 她养的我爱你 让它喘不过气 快攻抢篮板球 得分都靠我 还限是我去
epoch 250, perplexity 1.305350, time 0.62 sec
 - 分开 一只在停留 谁让它停留的 为什么我女朋友场外加油 你却还让我出糗 从才就耳 带堡马有别我 一场到气
 - 不分开期 我叫你爸 你打我妈 这样对吗干嘛这样 何必让酒牵鼻子走 瞎 说底星没斯 我想就这不离 如果水遇见

接下来采用相邻采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, False, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)
epoch 50, perplexity 61.961961, time 0.67 sec
 - 分开 我想要这 我有了空 如果了人 如果我人 你谁我有 你谁我有 你谁我有 你谁我有 你谁我有 你谁我有
 - 不分开 我有你的可写女人 想想我有我不要你的爱 在一我 别子我的 快谁我的 快谁我的 快谁我有 你谁我有 
epoch 100, perplexity 6.928485, time 0.69 sec
 - 分开 我有那这 其颗心悬 在一己空 在一定空 不一己空 在一定空 不一己空 在一定空 不一己空 在一定空
 - 不分开觉 会谁 一念的酒后 古底盘够  我马能这 在我去外睡  话有的假坦 你的寄美主 你不么美口 你分掌
epoch 150, perplexity 2.072935, time 0.70 sec
 - 分开 我想能 爱你走的太快 像话去对医药箱说 别怪我 别怪我 说你怎么面对我 甩开球 快给我抬起头 有话
 - 不分开觉 你想经离开我 不知不觉 我跟了这节活 我该好好生活 不知不觉 你已经离开我 不知不觉 我跟了这节
epoch 200, perplexity 1.315136, time 0.67 sec
 - 分开 一候的 你怎于打 连漠等听的溪会 带领你我 经你了外的溪边 默默等待 娘子 有什么不妥 有话就直说
 - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生
epoch 250, perplexity 1.183893, time 0.68 sec
 - 分开 一候的 是属于那年代 所有人看着我 抛物线进球 单手过人运球 篮下妙传出手 漂亮的假动作 帅呆了我
 - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生

循环神经网络的简介实现

定义模型

我们使用Pytorch中的nn.RNN来构造循环神经网络。在本节中,我们主要关注nn.RNN的以下几个构造函数参数:

  • input_size - The number of expected features in the input x
  • hidden_size – The number of features in the hidden state h
  • nonlinearity – The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’
  • batch_first – If True, then the input and output tensors are provided as (batch_size, num_steps, input_size). Default: False

这里的batch_first决定了输入的形状,我们使用默认的参数False,对应的输入形状是 (num_steps, batch_size, input_size)。

forward函数的参数为:

  • input of shape (num_steps, batch_size, input_size): tensor containing the features of the input sequence.
  • h_0 of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

forward函数的返回值是:

  • output of shape (num_steps, batch_size, num_directions * hidden_size): tensor containing the output features (h_t) from the last layer of the RNN, for each t.
  • h_n of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the hidden state for t = num_steps.

现在我们构造一个nn.RNN实例,并用一个简单的例子来看一下输出的形状。

rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)
num_steps, batch_size = 35, 2
X = torch.rand(num_steps, batch_size, vocab_size)
state = None
Y, state_new = rnn_layer(X, state)
print(Y.shape, state_new.shape)
torch.Size([35, 2, 256]) torch.Size([1, 2, 256])

我们定义一个完整的基于循环神经网络的语言模型。

class RNNModel(nn.Module):
    def __init__(self, rnn_layer, vocab_size):
        super(RNNModel, self).__init__()
        self.rnn = rnn_layer
        self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1) 
        self.vocab_size = vocab_size
        self.dense = nn.Linear(self.hidden_size, vocab_size)

    def forward(self, inputs, state):
        # inputs.shape: (batch_size, num_steps)
        X = to_onehot(inputs, vocab_size)
        X = torch.stack(X)  # X.shape: (num_steps, batch_size, vocab_size)
        hiddens, state = self.rnn(X, state)
        hiddens = hiddens.view(-1, hiddens.shape[-1])  # hiddens.shape: (num_steps * batch_size, hidden_size)
        output = self.dense(hiddens)
        return output, state

类似的,我们需要实现一个预测函数,与前面的区别在于前向计算和初始化隐藏状态。

def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
                      char_to_idx):
    state = None
    output = [char_to_idx[prefix[0]]]  # output记录prefix加上预测的num_chars个字符
    for t in range(num_chars + len(prefix) - 1):
        X = torch.tensor([output[-1]], device=device).view(1, 1)
        (Y, state) = model(X, state)  # 前向计算不需要传入模型参数
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(Y.argmax(dim=1).item())
    return ''.join([idx_to_char[i] for i in output])

使用权重为随机值的模型来预测一次。

model = RNNModel(rnn_layer, vocab_size).to(device)
predict_rnn_pytorch('分开', 10, model, vocab_size, device, idx_to_char, char_to_idx)
'分开动动小枚攻攻攻攻攻攻'

接下来实现训练函数,这里只使用了相邻采样。

def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes):
    loss = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    model.to(device)
    for epoch in range(num_epochs):
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样
        state = None
        for X, Y in data_iter:
            if state is not None:
                # 使用detach函数从计算图分离隐藏状态
                if isinstance (state, tuple): # LSTM, state:(h, c)  
                    state[0].detach_()
                    state[1].detach_()
                else: 
                    state.detach_()
            (output, state) = model(X, state) # output.shape: (num_steps * batch_size, vocab_size)
            y = torch.flatten(Y.T)
            l = loss(output, y.long())
            
            optimizer.zero_grad()
            l.backward()
            grad_clipping(model.parameters(), clipping_theta, device)
            optimizer.step()
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]
        

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn_pytorch(
                    prefix, pred_len, model, vocab_size, device, idx_to_char,
                    char_to_idx))

训练模型。

num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                            corpus_indices, idx_to_char, char_to_idx,
                            num_epochs, num_steps, lr, clipping_theta,
                            batch_size, pred_period, pred_len, prefixes)
epoch 50, perplexity 13.102269, time 0.57 sec
 - 分开 我不了不多  你想你的你我 我的你的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我疯狂的可爱女人 
 - 不分开 我不要再想  我想你你在我不多 我想你你的你 我 一不了我 你想一你在我 你的可爱女人 温柔的让我
epoch 100, perplexity 1.292104, time 0.44 sec
 - 分开 想像 这里脉 它知不觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我
 - 不分开 你我该好生活  还不可以简简单单没有伤害 你 靠着我的肩膀 你 在我胸口睡著 像这样的生活 我爱你
epoch 150, perplexity 1.063221, time 0.52 sec
 - 分开 想我 你牵着 有手不会掩 我 选你我 一直到酒 为我好定你 我不懂 想你打我妈想 就说你怎么 我不
 - 不分开 你像很不起 从小到大你叫我学要你想你 我 想要和你的笑我想要 是你太会的我爱你 让你的手过我不能活
epoch 200, perplexity 1.033084, time 0.50 sec
 - 分开 想我 你牵着 有手不能场悲剧 不可以让我不能为你 我不会好生  不知道觉 你已经离开我 不知不觉 
 - 不分开 你爸的梦笑 我知道  想要有你爸我 干什么 我静道让你身上 干什么 已经能可以 我妈跟没有 情来的
epoch 250, perplexity 1.020886, time 0.66 sec
 - 分开 我不了空屋 打不同 你你在 我不能再受宠河找的话  我感上的可爱女人 坏坏的让我疯狂的可爱女人 漂
 - 不分开 你爸的梦笑 我知不知 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该

posted @ 2020-02-14 14:31  rainman999  阅读(225)  评论(0编辑  收藏  举报