LRU的实现
实现LRU,最近最少使用,数据结构为哈希双链表
双链表维护一个队列,头最近使用,尾最近不适用
hash用来快速找到对应的节点
struct DLinkedNode { int key, value; DLinkedNode* prev; DLinkedNode* next; DLinkedNode(): key(0), value(0), prev(nullptr), next(nullptr) {} DLinkedNode(int _key, int _value): key(_key), value(_value), prev(nullptr), next(nullptr) {} }; class LRUCache { private: unordered_map<int, DLinkedNode*> cache; DLinkedNode* head; DLinkedNode* tail; int size; int capacity; public: LRUCache(int _capacity): capacity(_capacity), size(0) { // 使用伪头部和伪尾部节点 head = new DLinkedNode(); tail = new DLinkedNode(); head->next = tail; tail->prev = head; } int get(int key) { if (!cache.count(key)) { return -1; } // 如果 key 存在,先通过哈希表定位,再移到头部 DLinkedNode* node = cache[key]; moveToHead(node); return node->value; } void put(int key, int value) { if (!cache.count(key)) { // 如果 key 不存在,创建一个新的节点 DLinkedNode* node = new DLinkedNode(key, value); // 添加进哈希表 cache[key] = node; // 添加至双向链表的头部 addToHead(node); ++size; if (size > capacity) { // 如果超出容量,删除双向链表的尾部节点 DLinkedNode* removed = removeTail(); // 删除哈希表中对应的项 cache.erase(removed->key); // 防止内存泄漏 delete removed; --size; } } else { // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部 DLinkedNode* node = cache[key]; node->value = value; moveToHead(node); } } void addToHead(DLinkedNode* node) { node->prev = head; node->next = head->next; head->next->prev = node; head->next = node; } void removeNode(DLinkedNode* node) { node->prev->next = node->next; node->next->prev = node->prev; } void moveToHead(DLinkedNode* node) { removeNode(node); addToHead(node); } DLinkedNode* removeTail() { DLinkedNode* node = tail->prev; removeNode(node); return node; } };
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通