行走的蓑衣客

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
统计
 

python代码

复制代码
import math
import os
import sympy as sy
import numpy as np
import cv2
from osgeo import gdal

def Polar2Cartesian(theata):
    """
    极坐标转直角坐标系
    :return: 斜率
    """
    pi = 3.14
    radian = pi * theata / 180
    return math.tan(radian)
def Painter(ori,theta):
    """
    painter a picture
    :param ori: origin image
    :param theta: θ
    :return: img
    """
    width, height = ori.shape[0], ori.shape[1]
    img = np.zeros((height,width))
    slope = Polar2Cartesian(theta)
    if theta < 90:
        min_offset = int(0 - slope * width)
        max_offset = height - 1
    else:
        min_offset = 1
        max_offset = 2 * height - int(slope * width)
    for offset in range(min_offset, max_offset, 30):
        if theta < 45:
            for i in range(0, width):
                y = int(slope * i) + offset
                if y >= height:
                    break
                # idx += 1
                img[y, i] = 255
        elif theta <= 90:
            """
            x = 1/slop
            """
            for i in range(0, height):
                x = int((i - offset) / slope)
                if x >= width or x < 0:
                    continue
                # idx += 1
                img[i, x] = 255
        elif theta <= 135:
            for i in range(0, height):
                x = int((i - offset) / slope)
                if x >= width or x < 0:
                    continue
                # idx += 1
                img[i, x] = 255
        else:
            for i in range(0, width):
                y = int(slope * i) + offset
                if (y >= height or y < 0) and offset < height:
                    break
                if (y >= height or y < 0) and offset >= height:
                    continue
                # idx += 1
                img[y, i] = 255
    return img
复制代码

 

posted on   行走的蓑衣客  阅读(1172)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
 
点击右上角即可分享
微信分享提示