行走的蓑衣客

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
统计
 

  在同级目录完成tif和jpg的批量转换

复制代码
import os
import cv2
import numpy as np
from osgeo import gdal

#数据格式转化
def normalization(data):
    _range = np.max(data) - np.min(data)
    return (data - np.min(data)) / _range
def imgto8bit(img):
    img_nrm = normalization(img)
    img_8 = np.uint8(255 * img_nrm)
    return img_8


def tif_jpg(rasterfile):
    in_ds = gdal.Open(rasterfile)  # 打开样本文件
    xsize = in_ds.RasterXSize  # 获取行列数
    ysize = in_ds.RasterYSize
    bands = in_ds.RasterCount
    B_band = in_ds.GetRasterBand(1)
    B= B_band.ReadAsArray(0, 0, xsize, ysize).astype(np.int16)
    G_band = in_ds.GetRasterBand(2)
    G = G_band.ReadAsArray(0, 0, xsize, ysize).astype(np.int16)
    R_band = in_ds.GetRasterBand(3)
    R = R_band.ReadAsArray(0, 0, xsize, ysize).astype(np.int16)
    R1 = imgto8bit(R)
    G1 = imgto8bit(G)
    B1 = imgto8bit(B)
    data2= cv2.merge([R1,G1,B1])
    return data2
if __name__ == '__main__':
    path=r"F:\algorithm\算法练习\拼接与镶嵌\test2_next"
    classs = os.listdir(path)
    for idx, folder in enumerate(classs):
        if folder.endswith('tif') or folder.endswith('tiff') :
            ori_image = os.path.join(path, folder)
            print(ori_image)
            if folder.endswith('tiff'):
                result_name = os.path.basename(ori_image)[:-5]
            else:
                result_name = os.path.basename(ori_image)[:-4]
            # print(result_name)
            a = os.path.dirname(ori_image)
            out = a + "\\" + result_name + ".jpg"
            img=tif_jpg(ori_image)
            cv2.imencode('.jpg', img)[1].tofile(out)
复制代码

 

复制代码
#法二
def tif_jpg(rasterfile):
    in_ds = gdal.Open(rasterfile)  # 打开样本文件
    xsize = in_ds.RasterXSize  # 获取行列数
    ysize = in_ds.RasterYSize
    geotransform = in_ds.GetGeoTransform()
    bands = in_ds.RasterCount

    B_band = in_ds.GetRasterBand(1)
    B = B_band.ReadAsArray(0, 0, xsize, ysize)
    G_band = in_ds.GetRasterBand(2)
    G = G_band.ReadAsArray(0, 0, xsize, ysize)
    R_band = in_ds.GetRasterBand(3)
    R = R_band.ReadAsArray(0, 0, xsize, ysize)

    R1 = ((R - np.min(R)) / (np.max(R)) - np.min(R)) * 256

    R1 = cv2.equalizeHist(R1.astype(np.uint8))
    G1 = ((G - np.min(G)) / (np.max(G)) - np.min(G)) * 256
    G1 = cv2.equalizeHist(G1.astype(np.uint8))
    B1 = ((B - np.min(B)) / (np.max(B)) - np.min(B)) * 256
    B1 = cv2.equalizeHist(B1.astype(np.uint8))
    data2 = cv2.merge([R1, G1, B1])

    return data2, geotransform
复制代码

 

posted on   行走的蓑衣客  阅读(1753)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
 
点击右上角即可分享
微信分享提示