python_全局锁GIL(提炼)

加工: https://www.cnblogs.com/jokerbj/p/7460260.html

 

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL

结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
其他解释器,不是这样的

 

如果多个线程的target=work,那么执行流程是

多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行

解释器的代码是所有线程共享的,所以垃圾回收线程也可能访问到解释器的代码而去执行,这就导致了一个问题:对于同一个数据100,可能线程1执行x=100的同时,而垃圾回收执行的是回收100的操作,解决这种问题没有什么高明的方法,就是加锁处理,如下图的GIL,保证python解释器同一时间只能执行一个任务的代码

 

 

 

#1. cpu到底是用来做计算的,还是用来做I/O的?

#2. 多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能

#3. 每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处

 




posted @ 2018-09-10 21:05  sunzebo  阅读(99)  评论(0编辑  收藏  举报