玉滨的博客

导航

大作业

import os
import jieba
path=r"/Volumes/E盘/词库/258"

with open(r'/Volumes/E盘/词库/stopsCN.txt',encoding='utf-8')as f:
    stopword=f.read().split('\n')

List01=[]
List02=[]

# for root,dirs,files in os.walk(path):
def read_text(name,start,end):
    for file in range(start,end):
            file = '/Volumes/E盘/词库/258/'+name+'/'+str(file)+'.txt'
            with open(file,'r',encoding='utf-8') as f:
                texts=f.read()
         
            #target=file.split('/')[-2]
            target = name
            
            texts = "".join([text for text in texts if text.isalpha()])

            texts = [text for text in jieba.cut(texts,cut_all=True) if len(text) >=2]

            texts = " ".join([text for text in texts if text not in stopword])


            List01.append(target)
            List02.append(texts)
     

read_text("家居",224236,224263)
read_text("教育",284460,284487)
read_text("科技",481650,481677)
read_text("社会",430801,430827)
read_text("时尚",326396,326423)


    

 

# 划分训练集和测试集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(List02,List01,test_size=0.2)

 

# 文本特征提取
from sklearn.feature_extraction.text import TfidfVectorizer
vec = TfidfVectorizer()
X_train = vec.fit_transform(x_train)
X_test = vec.transform(x_test)

 

from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report
# 多项式朴素贝叶斯
mnb = MultinomialNB()
module = mnb.fit(X_train, y_train)
y_predict = module.predict(X_test)
# 对数据进行5次分割
scores=cross_val_score(mnb,X_test,y_test,cv=5)
print("验证效果:",scores.mean())
print("分类结果:\n",classification_report(y_predict,y_test))

 

 

import collections
# 统计测试集和预测集的各类新闻个数
testCount = collections.Counter(y_test)
predCount = collections.Counter(y_predict)
print('实际:',testCount,'\n', '预测', predCount)

# 建立标签列表,实际结果列表,预测结果列表,
nameList = list(testCount.keys())
testList = list(testCount.values())
predictList = list(predCount.values())
x = list(range(len(nameList)))
print("新闻类别:",nameList,'\n',"实际:",testList,'\n',"预测:",predictList)

 

 

posted on 2018-12-19 14:58  玉滨的博客  阅读(392)  评论(1编辑  收藏  举报