8086汇编指令快速参考

从emu8086软件的文档中看到的,觉得不错,所以拷贝出来了!

Complete 8086 instruction set  



Quick reference:

AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
CALL 
CBW 
CLC 
CLD 
CLI 
CMC 
CMP 
CMPSB 
CMPSW 
CWD 
DAA 
DAS 
DEC 
DIV 
HLT 
IDIV 
IMUL 
IN 
INC 
INT 
INTO 
IRET 
JA 
JAE 
JB 
JBE 
JC 
JCXZ 
JE 
JG 
JGE 
JL 
JLE 
JMP 
JNA 
JNAE 
JNB 
JNBE 
JNC 
JNE 
JNG 
JNGE 
JNL 
JNLE 
JNO 
JNP 
JNS 
JNZ 
JO 
JP 
JPE 
JPO 
JS 
JZ 
LAHF 
LDS 
LEA 
LES 
LODSB 
LODSW 
LOOP 
LOOPE 
LOOPNE 
LOOPNZ 
LOOPZ 
MOV 
MOVSB 
MOVSW 
MUL 
NEG 
NOP 
NOT 
OR 
OUT 
POP 
POPA 
POPF 
PUSH 
PUSHA 
PUSHF 
RCL 
RCR 
REP 
REPE 
REPNE 
REPNZ 
REPZ 
RET 
RETF 
ROL 
ROR 
SAHF 
SAL 
SAR 
SBB 
SCASB 
SCASW 
SHL 
SHR 
STC 
STD 
STI 
STOSB 
STOSW 
SUB 
TEST 
XCHG 
XLATB 
XOR 




Operand types:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc...(see Memory Access).

immediate: 5, -24, 3Fh, 10001101b, etc...



Notes:

  • When two operands are required for an instruction they are separated by comma. For example:

    REG, memory 

  • When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:

    AL, DL
    DX, AX
    m1 DB ?
    AL, m1
    m2 DW ?
    AX, m2 


  • Some instructions allow several operand combinations. For example:

    memory, immediate
    REG, immediate

    memory, REG
    REG, SREG 


  • Some examples contain macros, so it is advisable to use Shift + F8 hot key to Step Over (to make macro code execute at maximum speed set step delay to zero), otherwise emulator will step through each instruction of a macro. Here is an example that uses PRINTN macro:
     
       include 'emu8086.inc'
       ORG 100h
       MOV AL, 1
       MOV BL, 2
       PRINTN 'Hello World!'   ; macro.
       MOV CL, 3
       PRINTN 'Welcome!'       ; macro.
       RET

 




These marks are used to show the state of the flags:

1 - instruction sets this flag to 1.
0 - instruction sets this flag to 0.
r - flag value depends on result of the instruction.
? - flag value is undefined (maybe 1 or 0).





Some instructions generate exactly the same machine code, so disassembler may have a problem decoding to your original code. This is especially important for Conditional Jump instructions (see "Program Flow Control" in Tutorials for more information). 





Instructions in alphabetical order: 

Instruction Operands Description  
AAA No operands ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with BCD values. 

It works according to the following Algorithm: 

if low nibble of AL > 9 or AF = 1 then:
  • AL = AL + 6
  • AH = AH + 1
  • AF = 1
  • CF = 1
else
  • AF = 0
  • CF = 0
in both cases:
clear the high nibble of AL. 


Example:
MOV AX, 15   ; AH = 00, AL = 0Fh
AAA          ; AH = 01, AL = 05
RET
C Z S O P A
r ? ? ? ? r
Back to Top 
AAD No operands ASCII Adjust before Division.
Prepares two BCD values for division. 

Algorithm: 

  • AL = (AH * 10) + AL
  • AH = 0

Example:
MOV AX, 0105h   ; AH = 01, AL = 05
AAD             ; AH = 00, AL = 0Fh (15)
RET
C Z S O P A
? r r ? r ?
Back to Top 
AAM No operands ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values. 

Algorithm: 

  • AH = AL / 10
  • AL = remainder

Example:
MOV AL, 15   ; AL = 0Fh
AAM          ; AH = 01, AL = 05
RET
C Z S O P A
? r r ? r ?
Back to Top 
AAS No operands ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with BCD values. 

Algorithm:

if low nibble of AL > 9 or AF = 1 then:
  • AL = AL - 6
  • AH = AH - 1
  • AF = 1
  • CF = 1
else
  • AF = 0
  • CF = 0
in both cases:
clear the high nibble of AL. 


Example:
MOV AX, 02FFh  ; AH = 02, AL = 0FFh
AAS            ; AH = 01, AL = 09
RET
C Z S O P A
r ? ? ? ? r
Back to Top 
ADC REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Add with Carry.


Algorithm:

operand1 = operand1 + operand2 + CF 

Example:
STC        ; set CF = 1
MOV AL, 5  ; AL = 5
ADC AL, 1  ; AL = 7
RET
C Z S O P A
r r r r r r
Back to Top 
ADD REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Add.


Algorithm:

operand1 = operand1 + operand2 

Example:
MOV AL, 5   ; AL = 5
ADD AL, -3  ; AL = 2
RET
C Z S O P A
r r r r r r
Back to Top 
AND REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Logical AND between all bits of two operands. Result is stored in operand1.

These rules apply:

1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0


Example:
MOV AL, 'a'        ; AL = 01100001b
AND AL, 11011111b  ; AL = 01000001b  ('A')
RET
C Z S O P
0 r r 0 r
Back to Top 
CALL procedure name
label
4-byte address
Transfers control to procedure. Return address (IP) is pushed to stack. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset. If it's a far call, then code segment is pushed to stack as well.


Example:

ORG 100h  ; for COM file.

CALL p1

ADD AX, 1

RET         ; return to OS.

p1 PROC     ; procedure declaration.
    MOV AX, 1234h
    RET     ; return to caller.
p1 ENDP
C Z S O P A
unchanged
Back to Top 
CBW No operands Convert byte into word. 

Algorithm: 

if high bit of AL = 1 then:
  • AH = 255 (0FFh)

else
  • AH = 0

Example:
MOV AX, 0   ; AH = 0, AL = 0
MOV AL, -5  ; AX = 000FBh (251)
CBW         ; AX = 0FFFBh (-5)
RET
C Z S O P A
unchanged
Back to Top 
CLC No operands Clear Carry flag. 

Algorithm: 

CF = 0 

C
0
Back to Top 
CLD No operands Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW. 

Algorithm: 

DF = 0 

D
0
Back to Top 
CLI No operands Clear Interrupt enable flag. This disables hardware interrupts. 

Algorithm: 

IF = 0 

I
0
Back to Top 
CMC No operands Complement Carry flag. Inverts value of CF. 

Algorithm: 

if CF = 1 then CF = 0
if CF = 0 then CF = 1


C
r
Back to Top 
CMP REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Compare. 

Algorithm:

operand1 - operand2 

result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result. 


Example:
MOV AL, 5
MOV BL, 5
CMP AL, BL  ; AL = 5, ZF = 1 (so equal!)
RET
C Z S O P A
r r r r r r
Back to Top 
CMPSB No operands Compare bytes: ES:[DI] from DS:[SI]. 

Algorithm: 

  • DS:[SI] - ES:[DI]
  • set flags according to result:
    OF, SF, ZF, AF, PF, CF
  • if DF = 0 then
    • SI = SI + 1
    • DI = DI + 1
    else
    • SI = SI - 1
    • DI = DI - 1
Example:
open cmpsb.asm from c:\emu8086\examples 

C Z S O P A
r r r r r r
Back to Top 
CMPSW No operands Compare words: ES:[DI] from DS:[SI]. 

Algorithm: 

  • DS:[SI] - ES:[DI]
  • set flags according to result:
    OF, SF, ZF, AF, PF, CF
  • if DF = 0 then
    • SI = SI + 2
    • DI = DI + 2
    else
    • SI = SI - 2
    • DI = DI - 2
example:
open cmpsw.asm from c:\emu8086\examples 

C Z S O P A
r r r r r r
Back to Top 
CWD No operands Convert Word to Double word. 

Algorithm: 

if high bit of AX = 1 then:
  • DX = 65535 (0FFFFh)

else
  • DX = 0

Example:
MOV DX, 0   ; DX = 0
MOV AX, 0   ; AX = 0
MOV AX, -5  ; DX AX = 00000h:0FFFBh
CWD         ; DX AX = 0FFFFh:0FFFBh
RET
C Z S O P A
unchanged
Back to Top 
DAA No operands Decimal adjust After Addition.
Corrects the result of addition of two packed BCD values. 

Algorithm: 

if low nibble of AL > 9 or AF = 1 then:
  • AL = AL + 6
  • AF = 1
if AL > 9Fh or CF = 1 then:
  • AL = AL + 60h
  • CF = 1

Example:
MOV AL, 0Fh  ; AL = 0Fh (15)
DAA          ; AL = 15h
RET
C Z S O P A
r r r r r r
Back to Top 
DAS No operands Decimal adjust After Subtraction.
Corrects the result of subtraction of two packed BCD values. 

Algorithm: 

if low nibble of AL > 9 or AF = 1 then:
  • AL = AL - 6
  • AF = 1
if AL > 9Fh or CF = 1 then:
  • AL = AL - 60h
  • CF = 1

Example:
MOV AL, 0FFh  ; AL = 0FFh (-1)
DAS           ; AL = 99h, CF = 1
RET
C Z S O P A
r r r r r r
Back to Top 
DEC REG
memory
Decrement. 

Algorithm:

operand = operand - 1 


Example:
MOV AL, 255  ; AL = 0FFh (255 or -1)
DEC AL       ; AL = 0FEh (254 or -2)
RET
Z S O P A
r r r r r
CF - unchanged! Back to Top 
DIV REG
memory
Unsigned divide. 

Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)
Example:
MOV AX, 203   ; AX = 00CBh
MOV BL, 4
DIV BL        ; AL = 50 (32h), AH = 3
RET
C Z S O P A
? ? ? ? ? ?
Back to Top 
HLT No operands Halt the System.

Example:
MOV AX, 5
HLT
C Z S O P A
unchanged
Back to Top 
IDIV REG
memory
Signed divide. 

Algorithm:

when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)
Example:
MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL      ; AL = -50 (0CEh), AH = -3 (0FDh)
RET
C Z S O P A
? ? ? ? ? ?
Back to Top 
IMUL REG
memory
Signed multiply. 

Algorithm:

when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.
Example:
MOV AL, -2
MOV BL, -4
IMUL BL      ; AX = 8
RET
C Z S O P A
r ? ? r ? ?
CF=OF=0 when result fits into operand of IMUL. Back to Top 
IN AL, im.byte
AL, DX
AX, im.byte
AX, DX
Input from port into AL or AX.
Second operand is a port number. If required to access port number over 255 - DX register should be used. 
Example:
IN AX, 4  ; get status of traffic lights.
IN AL, 7  ; get status of stepper-motor.
C Z S O P A
unchanged
Back to Top 
INC REG
memory
Increment. 

Algorithm:

operand = operand + 1 

Example:
MOV AL, 4
INC AL       ; AL = 5
RET
Z S O P A
r r r r r
CF - unchanged! Back to Top 
INT immediate byte Interrupt numbered by immediate byte (0..255). 

Algorithm:

    Push to stack:
    • flags register
    • CS
    • IP
  • IF = 0
  • Transfer control to interrupt procedure

Example:
MOV AH, 0Eh  ; teletype.
MOV AL, 'A'
INT 10h      ; BIOS interrupt.
RET
C Z S O P A I
unchanged 0
Back to Top 
INTO No operands Interrupt 4 if Overflow flag is 1. 

Algorithm:

if OF = 1 then INT 4 

Example:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
MOV AL, -5
SUB AL, 127   ; AL = 7Ch (124)
INTO          ; process error.
RET
Back to Top 
IRET No operands Interrupt Return. 

Algorithm:

    Pop from stack:
    • IP
    • CS
    • flags register
C Z S O P A
popped
Back to Top 
JA label Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if (CF = 0) and (ZF = 0) then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 250
   CMP AL, 5
   JA label1
   PRINT 'AL is not above 5'
   JMP exit
label1:
   PRINT 'AL is above 5'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JAE label Short Jump if first operand is Above or Equal to second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if CF = 0 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 5
   CMP AL, 5
   JAE label1
   PRINT 'AL is not above or equal to 5'
   JMP exit
label1:
   PRINT 'AL is above or equal to 5'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JB label Short Jump if first operand is Below second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if CF = 1 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 1
   CMP AL, 5
   JB  label1
   PRINT 'AL is not below 5'
   JMP exit
label1:
   PRINT 'AL is below 5'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JBE label Short Jump if first operand is Below or Equal to second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if CF = 1 or ZF = 1 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 5
   CMP AL, 5
   JBE  label1
   PRINT 'AL is not below or equal to 5'
   JMP exit
label1:
   PRINT 'AL is below or equal to 5'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JC label Short Jump if Carry flag is set to 1. 

Algorithm:

    if CF = 1 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 255
   ADD AL, 1
   JC  label1
   PRINT 'no carry.'
   JMP exit
label1:
   PRINT 'has carry.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JCXZ label Short Jump if CX register is 0. 

Algorithm:

    if CX = 0 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV CX, 0
   JCXZ label1
   PRINT 'CX is not zero.'
   JMP exit
label1:
   PRINT 'CX is zero.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JE label Short Jump if first operand is Equal to second operand (as set by CMP instruction). Signed/Unsigned. 

Algorithm:

    if ZF = 1 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 5
   CMP AL, 5
   JE  label1
   PRINT 'AL is not equal to 5.'
   JMP exit
label1:
   PRINT 'AL is equal to 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JG label Short Jump if first operand is Greater then second operand (as set by CMP instruction). Signed. 

Algorithm:

    if (ZF = 0) and (SF = OF) then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 5
   CMP AL, -5
   JG  label1
   PRINT 'AL is not greater -5.'
   JMP exit
label1:
   PRINT 'AL is greater -5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JGE label Short Jump if first operand is Greater or Equal to second operand (as set by CMP instruction). Signed. 

Algorithm:

    if SF = OF then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 2
   CMP AL, -5
   JGE  label1
   PRINT 'AL < -5'
   JMP exit
label1:
   PRINT 'AL >= -5'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JL label Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed. 

Algorithm:

    if SF <> OF then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, -2
   CMP AL, 5
   JL  label1
   PRINT 'AL >= 5.'
   JMP exit
label1:
   PRINT 'AL < 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JLE label Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed. 

Algorithm:

    if SF <> OF or ZF = 1 then jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, -2
   CMP AL, 5
   JLE label1
   PRINT 'AL > 5.'
   JMP exit
label1:
   PRINT 'AL <= 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JMP label
4-byte address
Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset.


Algorithm:

    always jump
Example:
   include 'emu8086.inc'
   ORG 100h
   MOV AL, 5
   JMP label1    ; jump over 2 lines!
   PRINT 'Not Jumped!'
   MOV AL, 0
label1:
   PRINT 'Got Here!'
   RET
C Z S O P A
unchanged
Back to Top 
JNA label Short Jump if first operand is Not Above second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if CF = 1 or ZF = 1 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, 5
   JNA label1
   PRINT 'AL is above 5.'
   JMP exit
label1:
   PRINT 'AL is not above 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNAE label Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if CF = 1 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, 5
   JNAE label1
   PRINT 'AL >= 5.'
   JMP exit
label1:
   PRINT 'AL < 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNB label Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if CF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 7
   CMP AL, 5
   JNB label1
   PRINT 'AL < 5.'
   JMP exit
label1:
   PRINT 'AL >= 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNBE label Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned. 

Algorithm:

    if (CF = 0) and (ZF = 0) then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 7
   CMP AL, 5
   JNBE label1
   PRINT 'AL <= 5.'
   JMP exit
label1:
   PRINT 'AL > 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNC label Short Jump if Carry flag is set to 0. 

Algorithm:

    if CF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   ADD AL, 3
   JNC  label1
   PRINT 'has carry.'
   JMP exit
label1:
   PRINT 'no carry.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNE label Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned. 

Algorithm:

    if ZF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, 3
   JNE  label1
   PRINT 'AL = 3.'
   JMP exit
label1:
   PRINT 'Al <> 3.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNG label Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed. 

Algorithm:

    if (ZF = 1) and (SF <> OF) then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, 3
   JNG  label1
   PRINT 'AL > 3.'
   JMP exit
label1:
   PRINT 'Al <= 3.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNGE label Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed. 

Algorithm:

    if SF <> OF then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, 3
   JNGE  label1
   PRINT 'AL >= 3.'
   JMP exit
label1:
   PRINT 'Al < 3.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNL label Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed. 

Algorithm:

    if SF = OF then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, -3
   JNL label1
   PRINT 'AL < -3.'
   JMP exit
label1:
   PRINT 'Al >= -3.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNLE label Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed. 

Algorithm:

    if (SF = OF) and (ZF = 0) then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 2
   CMP AL, -3
   JNLE label1
   PRINT 'AL <= -3.'
   JMP exit
label1:
   PRINT 'Al > -3.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNO label Short Jump if Not Overflow. 

Algorithm:

    if OF = 0 then jump
Example:
; -5 - 2 = -7 (inside -128..127)
; the result of SUB is correct,
; so OF = 0:

include 'emu8086.inc'

ORG 100h
  MOV AL, -5
  SUB AL, 2   ; AL = 0F9h (-7)
JNO  label1
  PRINT 'overflow!'
JMP exit
label1:
  PRINT 'no overflow.'
exit:
  RET
C Z S O P A
unchanged
Back to Top 
JNP label Short Jump if No Parity (odd). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if PF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 00000111b   ; AL = 7
   OR  AL, 0           ; just set flags.
   JNP label1
   PRINT 'parity even.'
   JMP exit
label1:
   PRINT 'parity odd.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNS label Short Jump if Not Signed (if positive). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if SF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 00000111b   ; AL = 7
   OR  AL, 0           ; just set flags.
   JNS label1
   PRINT 'signed.'
   JMP exit
label1:
   PRINT 'not signed.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JNZ label Short Jump if Not Zero (not equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if ZF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 00000111b   ; AL = 7
   OR  AL, 0           ; just set flags.
   JNZ label1
   PRINT 'zero.'
   JMP exit
label1:
   PRINT 'not zero.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JO label Short Jump if Overflow. 

Algorithm:

    if OF = 1 then jump
Example:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:

include 'emu8086.inc'

org 100h
  MOV AL, -5
  SUB AL, 127   ; AL = 7Ch (124)
JO  label1
  PRINT 'no overflow.'
JMP exit
label1:
  PRINT 'overflow!'
exit:
  RET
C Z S O P A
unchanged
Back to Top 
JP label Short Jump if Parity (even). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if PF = 1 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 00000101b   ; AL = 5
   OR  AL, 0           ; just set flags.
   JP label1
   PRINT 'parity odd.'
   JMP exit
label1:
   PRINT 'parity even.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JPE label Short Jump if Parity Even. Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if PF = 1 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 00000101b   ; AL = 5
   OR  AL, 0           ; just set flags.
   JPE label1
   PRINT 'parity odd.'
   JMP exit
label1:
   PRINT 'parity even.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JPO label Short Jump if Parity Odd. Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if PF = 0 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 00000111b   ; AL = 7
   OR  AL, 0           ; just set flags.
   JPO label1
   PRINT 'parity even.'
   JMP exit
label1:
   PRINT 'parity odd.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JS label Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if SF = 1 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 10000000b   ; AL = -128
   OR  AL, 0           ; just set flags.
   JS label1
   PRINT 'not signed.'
   JMP exit
label1:
   PRINT 'signed.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
JZ label Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. 

Algorithm:

    if ZF = 1 then jump
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV AL, 5
   CMP AL, 5
   JZ  label1
   PRINT 'AL is not equal to 5.'
   JMP exit
label1:
   PRINT 'AL is equal to 5.'
exit:
   RET
C Z S O P A
unchanged
Back to Top 
LAHF No operands Load AH from 8 low bits of Flags register. 

Algorithm:

      AH = flags register


AH bit:   7    6   5    4   3    2   1    0
        [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved. 

C Z S O P A
unchanged
Back to Top 
LDS REG, memory Load memory double word into word register and DS. 

Algorithm:

  • REG = first word
  • DS = second word

Example:


ORG 100h

LDS AX, m

RET

m  DW  1234h
   DW  5678h

END

AX is set to 1234h, DS is set to 5678h. 

C Z S O P A
unchanged
Back to Top 
LEA REG, memory Load Effective Address. 

Algorithm:

  • REG = address of memory (offset)


Example:

MOV BX, 35h
MOV DI, 12h
LEA SI, [BX+DI]    ; SI = 35h + 12h = 47h 
Note: The integrated 8086 assembler automatically replaces LEA with a more efficient MOV where possible. For example:

org 100h
LEA AX, m       ; AX = offset of m
RET
m  dw  1234h
END


C Z S O P A
unchanged
Back to Top 
LES REG, memory Load memory double word into word register and ES. 

Algorithm:

  • REG = first word
  • ES = second word

Example:


ORG 100h

LES AX, m

RET

m  DW  1234h
   DW  5678h

END

AX is set to 1234h, ES is set to 5678h. 

C Z S O P A
unchanged
Back to Top 
LODSB No operands Load byte at DS:[SI] into AL. Update SI.

Algorithm: 

  • AL = DS:[SI]
  • if DF = 0 then
    • SI = SI + 1
    else
    • SI = SI - 1
Example:

ORG 100h

LEA SI, a1
MOV CX, 5
MOV AH, 0Eh

m: LODSB
INT 10h
LOOP m

RET

a1 DB 'H', 'e', 'l', 'l', 'o'
C Z S O P A
unchanged
Back to Top 
LODSW No operands Load word at DS:[SI] into AX. Update SI.

Algorithm: 

  • AX = DS:[SI]
  • if DF = 0 then
    • SI = SI + 2
    else
    • SI = SI - 2
Example:

ORG 100h

LEA SI, a1
MOV CX, 5

REP LODSW   ; finally there will be 555h in AX.

RET

a1 dw 111h, 222h, 333h, 444h, 555h
C Z S O P A
unchanged
Back to Top 
LOOP label Decrease CX, jump to label if CX not zero. 

Algorithm: 

  • CX = CX - 1
  • if CX <> 0 then
    • jump
    else
    • no jump, continue
Example:
   include 'emu8086.inc'

   ORG 100h
   MOV CX, 5
label1:
   PRINTN 'loop!'
   LOOP label1
   RET
C Z S O P A
unchanged
Back to Top 
LOOPE label Decrease CX, jump to label if CX not zero and Equal (ZF = 1). 

Algorithm: 

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 1) then
    • jump
    else
    • no jump, continue
Example:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.

   include 'emu8086.inc'

   ORG 100h
   MOV AX, 0
   MOV CX, 5
label1:
   PUTC '*'
   ADD AX, 100
   CMP AH, 0
   LOOPE label1
   RET
C Z S O P A
unchanged
Back to Top 
LOOPNE label Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0). 

Algorithm: 

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 0) then
    • jump
    else
    • no jump, continue
Example:
; Loop until '7' is found,
; or 5 times.

   include 'emu8086.inc'

   ORG 100h
   MOV SI, 0
   MOV CX, 5
label1:
   PUTC '*'
   MOV AL, v1[SI]
   INC SI         ; next byte (SI=SI+1).
   CMP AL, 7
   LOOPNE label1
   RET
   v1 db 9, 8, 7, 6, 5
C Z S O P A
unchanged
Back to Top 
LOOPNZ label Decrease CX, jump to label if CX not zero and ZF = 0. 

Algorithm: 

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 0) then
    • jump
    else
    • no jump, continue
Example:
; Loop until '7' is found,
; or 5 times.

   include 'emu8086.inc'

   ORG 100h
   MOV SI, 0
   MOV CX, 5
label1:
   PUTC '*'
   MOV AL, v1[SI]
   INC SI         ; next byte (SI=SI+1).
   CMP AL, 7
   LOOPNZ label1
   RET
   v1 db 9, 8, 7, 6, 5
C Z S O P A
unchanged
Back to Top 
LOOPZ label Decrease CX, jump to label if CX not zero and ZF = 1. 

Algorithm: 

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 1) then
    • jump
    else
    • no jump, continue
Example:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.

   include 'emu8086.inc'

   ORG 100h
   MOV AX, 0
   MOV CX, 5
label1:
   PUTC '*'
   ADD AX, 100
   CMP AH, 0
   LOOPZ label1
   RET
C Z S O P A
unchanged
Back to Top 
MOV REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

SREG, memory
memory, SREG
REG, SREG
SREG, REG
Copy operand2 to operand1.

The MOV instruction cannot:
  • set the value of the CS and IP registers.
  • copy value of one segment register to another segment register (should copy to general register first).
  • copy immediate value to segment register (should copy to general register first).

Algorithm:

operand1 = operand2
Example:

ORG 100h
MOV AX, 0B800h    ; set AX = B800h (VGA memory).
MOV DS, AX        ; copy value of AX to DS.
MOV CL, 'A'       ; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh      ; BX = position on screen.
MOV [BX], CX      ; w.[0B800h:015Eh] = CX.
RET               ; returns to operating system.
C Z S O P A
unchanged
Back to Top 
MOVSB No operands Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm: 

  • ES:[DI] = DS:[SI]
  • if DF = 0 then
    • SI = SI + 1
    • DI = DI + 1
    else
    • SI = SI - 1
    • DI = DI - 1
Example:

ORG 100h

CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB

RET

a1 DB 1,2,3,4,5
a2 DB 5 DUP(0)
C Z S O P A
unchanged
Back to Top 
MOVSW No operands Copy word at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm: 

  • ES:[DI] = DS:[SI]
  • if DF = 0 then
    • SI = SI + 2
    • DI = DI + 2
    else
    • SI = SI - 2
    • DI = DI - 2
Example:

ORG 100h

CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSW

RET

a1 DW 1,2,3,4,5
a2 DW 5 DUP(0)
C Z S O P A
unchanged
Back to Top 
MUL REG
memory
Unsigned multiply. 

Algorithm:

when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.
Example:
MOV AL, 200   ; AL = 0C8h
MOV BL, 4
MUL BL        ; AX = 0320h (800)
RET
C Z S O P A
r ? ? r ? ?
CF=OF=0 when high section of the result is zero. Back to Top 
NEG REG
memory
Negate. Makes operand negative (two's complement). 

Algorithm:

  • Invert all bits of the operand
  • Add 1 to inverted operand
Example:
MOV AL, 5   ; AL = 05h
NEG AL      ; AL = 0FBh (-5)
NEG AL      ; AL = 05h (5)
RET
C Z S O P A
r r r r r r
Back to Top 
NOP No operands No Operation.

Algorithm: 

  • Do nothing
Example:
; do nothing, 3 times:
NOP
NOP
NOP
RET
C Z S O P A
unchanged
Back to Top 
NOT REG
memory
Invert each bit of the operand.

Algorithm: 

  • if bit is 1 turn it to 0.
  • if bit is 0 turn it to 1.
Example:
MOV AL, 00011011b
NOT AL   ; AL = 11100100b
RET
C Z S O P A
unchanged
Back to Top 
OR REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Logical OR between all bits of two operands. Result is stored in first operand.

These rules apply:

1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0


Example:
MOV AL, 'A'       ; AL = 01000001b
OR AL, 00100000b  ; AL = 01100001b  ('a')
RET
C Z S O P A
0 r r 0 r ?
Back to Top 
OUT im.byte, AL
im.byte, AX
DX, AL
DX, AX
Output from AL or AX to port.
First operand is a port number. If required to access port number over 255 - DX register should be used. 

Example:
MOV AX, 0FFFh ; Turn on all
OUT 4, AX     ; traffic lights.

MOV AL, 100b  ; Turn on the third
OUT 7, AL     ; magnet of the stepper-motor.
C Z S O P A
unchanged
Back to Top 
POP REG
SREG
memory
Get 16 bit value from the stack. 

Algorithm:

  • operand = SS:[SP] (top of the stack)
  • SP = SP + 2

Example:
MOV AX, 1234h
PUSH AX
POP  DX     ; DX = 1234h
RET
C Z S O P A
unchanged
Back to Top 
POPA No operands Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack.
SP value is ignored, it is Popped but not set to SP register).

Note: this instruction works only on 80186 CPU and later! 

Algorithm:

  • POP DI
  • POP SI
  • POP BP
  • POP xx (SP value ignored)
  • POP BX
  • POP DX
  • POP CX
  • POP AX
C Z S O P A
unchanged
Back to Top 
POPF No operands Get flags register from the stack. 

Algorithm:

  • flags = SS:[SP] (top of the stack)
  • SP = SP + 2
C Z S O P A
popped
Back to Top 
PUSH REG
SREG
memory
immediate
Store 16 bit value in the stack.

Note: PUSH immediate works only on 80186 CPU and later! 

Algorithm:

  • SP = SP - 2
  • SS:[SP] (top of the stack) = operand

Example:
MOV AX, 1234h
PUSH AX
POP  DX     ; DX = 1234h
RET
C Z S O P A
unchanged
Back to Top 
PUSHA No operands Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI in the stack.
Original value of SP register (before PUSHA) is used.

Note: this instruction works only on 80186 CPU and later! 

Algorithm:

  • PUSH AX
  • PUSH CX
  • PUSH DX
  • PUSH BX
  • PUSH SP
  • PUSH BP
  • PUSH SI
  • PUSH DI
C Z S O P A
unchanged
Back to Top 
PUSHF No operands Store flags register in the stack. 

Algorithm:

  • SP = SP - 2
  • SS:[SP] (top of the stack) = flags
C Z S O P A
unchanged
Back to Top 
RCL memory, immediate
REG, immediate

memory, CL
REG, CL
Rotate operand1 left through Carry Flag. The number of rotates is set by operand2. 
When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions). 

Algorithm:

    shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted to the right-most position.

Example:
STC               ; set carry (CF=1).
MOV AL, 1Ch       ; AL = 00011100b
RCL AL, 1         ; AL = 00111001b,  CF=0.
RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
RCR memory, immediate
REG, immediate

memory, CL
REG, CL
Rotate operand1 right through Carry Flag. The number of rotates is set by operand2. 

Algorithm:

    shift all bits right, the bit that goes off is set to CF and previous value of CF is inserted to the left-most position.

Example:
STC               ; set carry (CF=1).
MOV AL, 1Ch       ; AL = 00011100b
RCR AL, 1         ; AL = 10001110b,  CF=0.
RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
REP chain instruction
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times. 

Algorithm:

check_cx:

if CX <> 0 then
  • do following chain instruction
  • CX = CX - 1
  • go back to check_cx
else
  • exit from REP cycle
Z
r
Back to Top 
REPE chain instruction
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times. 

Algorithm:

check_cx:

if CX <> 0 then
  • do following chain instruction
  • CX = CX - 1
  • if ZF = 1 then:
    • go back to check_cx
    else
    • exit from REPE cycle
else
  • exit from REPE cycle
example:
open cmpsb.asm from c:\emu8086\examples 

Z
r
Back to Top 
REPNE chain instruction
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum CX times. 

Algorithm:

check_cx:

if CX <> 0 then
  • do following chain instruction
  • CX = CX - 1
  • if ZF = 0 then:
    • go back to check_cx
    else
    • exit from REPNE cycle
else
  • exit from REPNE cycle
Z
r
Back to Top 
REPNZ chain instruction
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times. 

Algorithm:

check_cx:

if CX <> 0 then
  • do following chain instruction
  • CX = CX - 1
  • if ZF = 0 then:
    • go back to check_cx
    else
    • exit from REPNZ cycle
else
  • exit from REPNZ cycle
Z
r
Back to Top 
REPZ chain instruction
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times. 

Algorithm:

check_cx:

if CX <> 0 then
  • do following chain instruction
  • CX = CX - 1
  • if ZF = 1 then:
    • go back to check_cx
    else
    • exit from REPZ cycle
else
  • exit from REPZ cycle
Z
r
Back to Top 
RET No operands
or even immediate
Return from near procedure. 

Algorithm:

  • Pop from stack:
    • IP
  • if immediate operand is present: SP = SP + operand
Example:

ORG 100h  ; for COM file.

CALL p1

ADD AX, 1

RET         ; return to OS.

p1 PROC     ; procedure declaration.
    MOV AX, 1234h
    RET     ; return to caller.
p1 ENDP
C Z S O P A
unchanged
Back to Top 
RETF No operands
or even immediate
Return from Far procedure. 

Algorithm:

  • Pop from stack:
    • IP
    • CS
  • if immediate operand is present: SP = SP + operand
C Z S O P A
unchanged
Back to Top 
ROL memory, immediate
REG, immediate

memory, CL
REG, CL
Rotate operand1 left. The number of rotates is set by operand2. 

Algorithm:

    shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the right-most position.
Example:
MOV AL, 1Ch       ; AL = 00011100b
ROL AL, 1         ; AL = 00111000b,  CF=0.
RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
ROR memory, immediate
REG, immediate

memory, CL
REG, CL
Rotate operand1 right. The number of rotates is set by operand2. 

Algorithm:

    shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the left-most position.
Example:
MOV AL, 1Ch       ; AL = 00011100b
ROR AL, 1         ; AL = 00001110b,  CF=0.
RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
SAHF No operands Store AH register into low 8 bits of Flags register. 

Algorithm:

      flags register = AH


AH bit:   7    6   5    4   3    2   1    0
        [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved. 

C Z S O P A
r r r r r r
Back to Top 
SAL memory, immediate
REG, immediate

memory, CL
REG, CL
Shift Arithmetic operand1 Left. The number of shifts is set by operand2. 

Algorithm:

  • Shift all bits left, the bit that goes off is set to CF.
  • Zero bit is inserted to the right-most position.
Example:
MOV AL, 0E0h      ; AL = 11100000b
SAL AL, 1         ; AL = 11000000b,  CF=1.
RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
SAR memory, immediate
REG, immediate

memory, CL
REG, CL
Shift Arithmetic operand1 Right. The number of shifts is set by operand2. 

Algorithm:

  • Shift all bits right, the bit that goes off is set to CF.
  • The sign bit that is inserted to the left-most position has the same value as before shift.
Example:
MOV AL, 0E0h      ; AL = 11100000b
SAR AL, 1         ; AL = 11110000b,  CF=0.

MOV BL, 4Ch       ; BL = 01001100b
SAR BL, 1         ; BL = 00100110b,  CF=0.

RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
SBB REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Subtract with Borrow. 

Algorithm:

operand1 = operand1 - operand2 - CF 

Example:
STC
MOV AL, 5
SBB AL, 3    ; AL = 5 - 3 - 1 = 1

RET
C Z S O P A
r r r r r r
Back to Top 
SCASB No operands Compare bytes: AL from ES:[DI]. 

Algorithm: 

  • AL - ES:[DI]
  • set flags according to result:
    OF, SF, ZF, AF, PF, CF
  • if DF = 0 then
    • DI = DI + 1
    else
    • DI = DI - 1
C Z S O P A
r r r r r r
Back to Top 
SCASW No operands Compare words: AX from ES:[DI]. 

Algorithm: 

  • AX - ES:[DI]
  • set flags according to result:
    OF, SF, ZF, AF, PF, CF
  • if DF = 0 then
    • DI = DI + 2
    else
    • DI = DI - 2
C Z S O P A
r r r r r r
Back to Top 
SHL memory, immediate
REG, immediate

memory, CL
REG, CL
Shift operand1 Left. The number of shifts is set by operand2. 

Algorithm:

  • Shift all bits left, the bit that goes off is set to CF.
  • Zero bit is inserted to the right-most position.
Example:
MOV AL, 11100000b
SHL AL, 1         ; AL = 11000000b,  CF=1.

RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
SHR memory, immediate
REG, immediate

memory, CL
REG, CL
Shift operand1 Right. The number of shifts is set by operand2. 

Algorithm:

  • Shift all bits right, the bit that goes off is set to CF.
  • Zero bit is inserted to the left-most position.
Example:
MOV AL, 00000111b
SHR AL, 1         ; AL = 00000011b,  CF=1.

RET
C O
r r
OF=0 if first operand keeps original sign. Back to Top 
STC No operands Set Carry flag. 

Algorithm: 

CF = 1 

C
1
Back to Top 
STD No operands Set Direction flag. SI and DI will be decremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW. 

Algorithm: 

DF = 1 

D
1
Back to Top 
STI No operands Set Interrupt enable flag. This enables hardware interrupts. 

Algorithm: 

IF = 1 

I
1
Back to Top 
STOSB No operands Store byte in AL into ES:[DI]. Update DI.

Algorithm: 

  • ES:[DI] = AL
  • if DF = 0 then
    • DI = DI + 1
    else
    • DI = DI - 1
Example:

ORG 100h

LEA DI, a1
MOV AL, 12h
MOV CX, 5

REP STOSB

RET

a1 DB 5 dup(0)
C Z S O P A
unchanged
Back to Top 
STOSW No operands Store word in AX into ES:[DI]. Update DI.

Algorithm: 

  • ES:[DI] = AX
  • if DF = 0 then
    • DI = DI + 2
    else
    • DI = DI - 2
Example:

ORG 100h

LEA DI, a1
MOV AX, 1234h
MOV CX, 5

REP STOSW

RET

a1 DW 5 dup(0)
C Z S O P A
unchanged
Back to Top 
SUB REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Subtract. 

Algorithm:

operand1 = operand1 - operand2 

Example:
MOV AL, 5
SUB AL, 1         ; AL = 4

RET
C Z S O P A
r r r r r r
Back to Top 
TEST REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Logical AND between all bits of two operands for flags only. These flags are effected: ZF, SF, PF. Result is not stored anywhere.

These rules apply:

1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0


Example:
MOV AL, 00000101b
TEST AL, 1         ; ZF = 0.
TEST AL, 10b       ; ZF = 1.
RET
C Z S O P
0 r r 0 r
Back to Top 
XCHG REG, memory
memory, REG
REG, REG
Exchange values of two operands. 

Algorithm:

operand1 < - > operand2 

Example:
MOV AL, 5
MOV AH, 2
XCHG AL, AH   ; AL = 2, AH = 5
XCHG AL, AH   ; AL = 5, AH = 2
RET
C Z S O P A
unchanged
Back to Top 
XLATB No operands Translate byte from table.
Copy value of memory byte at DS:[BX + unsigned AL] to AL register. 

Algorithm:

AL = DS:[BX + unsigned AL] 

Example:

ORG 100h
LEA BX, dat
MOV AL, 2
XLATB     ; AL = 33h

RET

dat DB 11h, 22h, 33h, 44h, 55h
C Z S O P A
unchanged
Back to Top 
XOR REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
Logical XOR (Exclusive OR) between all bits of two operands. Result is stored in first operand.

These rules apply:

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0


Example:
MOV AL, 00000111b
XOR AL, 00000010b    ; AL = 00000101b
RET
C Z S O P A
0 r r 0 r ?
Back to Top







posted on 2017-01-02 00:39  sunylat  阅读(3665)  评论(0编辑  收藏  举报